• Title/Summary/Keyword: tall building design

Search Result 468, Processing Time 0.027 seconds

Conceptual Design and Wind Load Analysis of Tall Building

  • Lee, S.L.;Swaddiwudhipong, S.
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.1
    • /
    • pp.11-20
    • /
    • 2001
  • The paper describes the conceptual design, structural modelling and wind load analysis of tall buildings. The lateral stiffness of the building can be obtained economically through the interaction of core walls with peripheral frame tube and/or bundle of frame tubes and integrated design of the basement. The main structural components should be properly distributed such that the building will deflect mainly in the direction of the applied force without inducing significant response in other directions and twist. The cost effectiveness can be further enhanced through close consultation between architects and engineers at an early stage of conceptual design. Simplified structural modelling of the building and its response in three principal directions due to wind load are included. Effects of the two main structural components on the performances of a 70-story reinforced concrete building in terms of peak drift and maximum acceleration under wind load are discussed.

  • PDF

Quantifying the seismic resilience of two tall buildings designed using Chinese and US Codes

  • Tian, Yuan;Lu, Xiao;Lu, Xinzheng;Li, Mengke;Guan, Hong
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.925-942
    • /
    • 2016
  • With ongoing development of earthquake engineering research and the lessons learnt from a series of strong earthquakes, the seismic design concept of "resilience" has received much attention. Resilience describes the capability of a structure or a city to recover rapidly after earthquakes or other disasters. As one of the main features of urban constructions, tall buildings have greater impact on the sustainability and resilience of major cities. Therefore, it is important and timely to quantify their seismic resilience. In this work, a quantitative comparison of the seismic resilience of two tall buildings designed according to the Chinese and US seismic design codes was conducted. The prototype building, originally designed according to the US code as part of the Tall Building Initiative (TBI) Project, was redesigned in this work according to the Chinese codes under the same design conditions. Two refined nonlinear finite element (FE) models were established for both cases and their seismic responses were evaluated at different earthquake intensities, including the service level earthquake (SLE), the design-based earthquake (DBE) and the maximum considered earthquake (MCE). In addition, the collapse fragility functions of these two building models were established through incremental dynamic analysis (IDA). Based on the numerical results, the seismic resilience of both models was quantified and compared using the new-generation seismic performance assessment method proposed by FEMA P-58. The outcomes of this study indicate that the seismic resilience of the building according to the Chinese design is slightly better than that according to the US design. The conclusions drawn from this research are expected to guide further in-depth studies on improving the seismic resilience of tall buildings.

Fire & Life Safety Challenges in Sustainable Tall Building Design

  • Li, Fang;Reiss, Martin
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.1
    • /
    • pp.31-38
    • /
    • 2013
  • The movement towards sustainable building design can result in unique fire protection challenges and concerns, especially with super tall buildings in relationship to traditional prescriptive code compliance. Different countries haves different code requirements as well as local best practices and may cause conflict with the design features when designing green buildings. These include, but not limited to green roofs, sprinkler water quality and testing, fire department access and areas of refuge with direct or indirect impact by the perspective code compliance. The solutions to these prescriptive code challenges and fire safety concerns can range from simple alternatives to more detailed engineering performance-based design analyses with good solid practice.

Urban Density and the Porous High-Rise: The Integration of the Tall Building in the City - from China to New York

  • Klemperer, James von
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.2
    • /
    • pp.135-142
    • /
    • 2015
  • As the skyscraper matures as a building type, its role in actively connecting to, and reinforcing, major threads of urban fabric becomes increasingly more important. The creation of public spaces inside of and adjacent to tall buildings allows for significant additions to the public realm, facilitating better connections between varied uses, providing needed access to critical transportation functions. In this more integrated version of the tall building type, the density afforded by a vertical structure is complemented by strategically devised porosity of plan and section. This paper examines three major tower projects which exemplify a progressive approach to permeable design: the recently completed Jingan Kerry Centre in Shanghai, the Lotte Supertower in Seoul, now half completed, and the One Vanderbilt tower being proposed next to Grand Central Terminal in New York City. These projects suggest possibilities for innovative approaches to private development strategies, public planning processes, and architectural design.

Considerations of Sustainable High-rise Building Design in Different Climate Zones of China

  • Wan, Kevin K.W.;Chan, Man-Him;Cheng, Vincent S.Y.
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.4
    • /
    • pp.301-310
    • /
    • 2012
  • Buildings, energy and the environment are key issues that the building professions and energy policy makers have to address, especially in the context of sustainable development. With more tall buildings constructed in China, the impact on energy consumption and carbon emission would be great from buildings (2% increase of carbon dioxide annually between 1971 and 2004). The imperative was to investigate the building energy performance of high-rise in different climate zones and identify the key design parameters that impose significantly influence on energy performance in sustainable building design. Design implications on glazing performance, sizing of the ventilation fans, renewable energy application on high-rise building design are addressed. Combination of effective sustainable building design strategies (e.g., building envelope improvement, daylight harvesting, advanced lighting design, displacement ventilation, chilled ceiling etc.) could contribute more than 25% of the total building energy consumption compared to the international building energy code.

STEP Entities in Integrated Design System for Tall Buildings (초고층건물의 통합구조설계시스템에서 STEP 엔티티 개발)

  • Song, Hwa-Cheol;Cho, Yong-Soo;Kim, Soo-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.77-83
    • /
    • 2006
  • The planning process of complex projects in tall building is characterized by the cooperation of many involved specialists and by a high degree of information exchange. In order to improve the quality of the structural design of tall buildings, information of different involved partners in the planning process has to be integrated. This paper aims to introduce a concept of the integrated structural design for the tall building using STEP(Standard for the Exchange of Product Model Data). In this study, the entities of mass, column shortening, and serviceability evaluation for structural design in tall buildings are proposed.

  • PDF

Current Issues in Wind Engineering: A Review

  • Yong Chul Kim
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.4
    • /
    • pp.287-297
    • /
    • 2023
  • This paper briefly discusses current issues in wind engineering, including the enhancement of aerodynamic database and AI-assisted design, aerodynamic characteristics of tall buildings with atypical building shapes, application of computation fluid dynamics to wind engineering, evaluation of aerodynamic force coefficients based on a probabilistic method, estimation of tornadic wind speed (JEF scale) and effect of the Ekman Spiral on tall buildings.

Haut - A 21-storey Tall Timber Residential Building

  • Verhaegh, Rob;Vola, Mathew;de Jong, Jorn
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.3
    • /
    • pp.213-220
    • /
    • 2020
  • This paper reflects on the structural design of Haut; a 21-storey high-end residential development in Amsterdam, the Netherlands. Construction started in 2019 and is in progress at the time of writing. Upon completion in 2021, Haut will be the first residential building in the Netherlands to achieve a 'BREEAM-outstanding' classification. The building will reach a height of 73 m, making it the highest timber structure in the Netherlands. It contains some 14.500 ㎡ of predominantly residential functions. It features a hybrid concrete-timber stability system and concrete-timber floor panels. This paper describes the concepts behind the structural design for Haut and will touch upon the main challenges that have arisen from the specific combination of characteristics of the project. The paper describes the design of the stability system and -floor system, the analysis of differential movements between concrete and timber structures and wind vibrations. The paper aims to show how the design team has met these specific challenges by implementing a holistic design approach and integrating market knowledge at an early stage of the design.

Control of Asymmetrical Tall Buildings under Wind Loading (비대칭 고층건물의 내풍 및 제진 해석)

  • 민경원;김진구;조한욱
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.203-211
    • /
    • 1997
  • In the design of tall building system, the wind loading can be more dominant factor than earthquake loading, and thus, it is important to check the stability and human comfort against wind. Experimental wind tunnel test is usually performed to predict wind behavior of a tall building, however, the test is not cost-effective in the preliminary stage for various structural models of tall building systems. In this regard, the study is focused on the numerical wind analysis of the tall building with and without tuned mass dampers based on the three dimensional model of wind loads and building behavior. As a numerical result, an asymmetrical 102-story tall building is presented to show the results of root mean squares of build responses with and without tuned mass dampers.

  • PDF

Wind-induced tall building response: a time-domain approach

  • Simiu, Emil;Gabbai, Rene D.;Fritz, William P.
    • Wind and Structures
    • /
    • v.11 no.6
    • /
    • pp.427-440
    • /
    • 2008
  • Estimates of wind-induced wind effects on tall buildings are based largely on 1980s technology. Such estimates can vary significantly depending upon the wind engineering laboratory producing them. We describe an efficient database-assisted design (DAD) procedure allowing the realistic estimation of wind-induced internal forces with any mean recurrence interval in any individual member. The procedure makes use of (a) time series of directional aerodynamic pressures recorded simultaneously at typically hundreds of ports on the building surface, (b) directional wind climatological data, (c) micrometeorological modeling of ratios between wind speeds in open exposure and mean wind speeds at the top of the building, (d) a physically and probabilistically realistic aerodynamic/climatological interfacing model, and (e) modern computational resources for calculating internal forces and demand-to-capacity ratios for each member being designed. The procedure is applicable to tall buildings not susceptible to aeroelastic effects, and with sufficiently large dimensions to allow placement of the requisite pressure measurement tubes. The paper then addresses the issue of accounting explicitly for uncertainties in the factors that determine wind effects. Unlike for routine structures, for which simplifications inherent in standard provisions are acceptable, for tall buildings these uncertainties need to be considered with care, since over-simplified reliability estimates could defeat the purpose of ad-hoc wind tunnel tests.