• Title/Summary/Keyword: tag data transmission protocol

Search Result 7, Processing Time 0.018 seconds

Design and Implementation of Large Tag Data Transmission Protocol for 2.4GHz Multi-Channel Active RFID System (2.4GHz 다중채널 능동형 RFID시스템을 위한 대용량 태그 데이터 전송 프로토콜의 설계 및 구현)

  • Lee, Chae-Suk;Kim, Dong-Hyun;Kim, Jong-Doek
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.3
    • /
    • pp.217-227
    • /
    • 2010
  • To apply active RFID technology in the various kinds of industry, it needs to quickly transmit a large amount of data. ISO/IEC 18000-7 standard uses the 433.92MHz as single channel system and its transmit rate is just 27.8kbps, that is insufficient for a large amount of data transmission. To solve this problem, we designed a new data transmission protocol using 2.4GHz band. The feature of designed protocol is not only making over 255bytes data messages using the Burst Read UDB but also efficiently transmitting it. To implement this protocol, we use Texas Instruments's SmartRF04 develop kit and CC2500 transceiver as RF module. As an evaluation of 63.75kbytes data transmission, we demonstrate that transmission time of Burst Read UDB has improved as 17.95% faster than that of Read UDB in the ISO/IEC 18000-7.

Collision-Free Arbitration Protocol for Active RFID Systems

  • Wang, Honggang;Pei, Changxing;Su, Bo
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.34-39
    • /
    • 2012
  • Collisions between tags greatly reduce the identification speed in radio frequency identification (RFID) systems and increase communication overhead. In particular for an active RFID system, tags are powered by small batteries, and a large number of re-transmissions caused by collisions can deteriorate and exhaust the tag energy which may result in missing tags. An efficient collision-free arbitration protocol for active RFID systems is proposed in this paper. In this protocol, a new mechanism involving collision detection, collision avoidance, and fast tag access is introduced. Specifically, the pulse burst duration and busy-tone-detection delay are introduced between the preamble and data portion of a tag-to-reader (T-R) frame. The reader identifies tag collision by detecting pulses and transmits a busy tone to avoid unnecessary transmission when collision occurs. A polling process is then designed to quickly access the collided tags. It is shown that the use of the proposed protocol results in a system throughput of 0.612, which is an obvious improvement when compared to the framed-slotted ALOHA (FSA) arbitration protocol for ISO/IEC 18000-7 standard. Furthermore, the proposed protocol greatly reduces communication overhead, which leads to energy conservation.

Collision Reduction Using Modified Q-Algorithm with Moving Readers in LED-ID System

  • Huynh, Vu Van;Le, Nam-Tuan;Choi, Sun-Woong;Jang, Yeong-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5A
    • /
    • pp.358-366
    • /
    • 2012
  • LED-ID (Light Emitting Diode - Identification) is one of the key technologies for identification, data transmission, and illumination simultaneously. This is the new paradigm in the identification technology environment. There are many issues are still now challenging to achieve high performance in LED-ID system. Collision issue is one of them. Actually this is the most significant issue in all identification system. LED-ID system also suffers from collision problem. In our system, collision occurs when two or more readers transmit data to tag at the same time or vice versa. There are many anti-collision protocols to resolve this problem; such as: Slotted ALOHA, Basic Frame Slotted ALOHA, Query Tree, Tree Splitting, and Q-Algorithm etc. In this paper, we propose modified Q-Algorithm to resolve collision at tag. The proposed protocol is based on Q-Algorithm and used the information of arrived readers to a tag from neighbor. The information includes transmitting slot number of readers and the number of readers that can be arrived in next slot. Our proposed protocol can reduce the numbers of collision slot and the successful time to identify all readers. In this paper our simulation and theoretical results are presented.

Authentication Protocol of Private Code-based for Advanced Security of RFID System (RFID 시스템 보안 강화를 위한 비공개 코드 기반의 인증 프로토콜)

  • Jang, Bong-Im;Kim, Yong-Tae;Jeong, Yoon-Su;Park, Gil-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.737-744
    • /
    • 2010
  • The use of RFID recently tends to increase and is expected to expand all over the industry and life. However, RFID is much vulnerable to the malign threats such as eavesdropping, replay attack, spoofing attack, location tracking in the process of authentication. In particular, it is difficult to apply authentication protocol used in the other previous system to low-priced RFID tag. After all, this paper suggests the scheme of efficient authentication protocol for RFID privacy protection. Compared to the previous scheme, suggested scheme reinforces the checking process of transmission data and is secure from eavesdropping and spoofing attack. It minimizes the operation work of the tag and is very useful to apply to the low-priced tag. It also has the merit to confirm the efficiency of communication by reducing the communication rounds.

Streaming RFID: Robust Stream Transmission over Passive RFID

  • Hwang, Seok-Joong;Han, Young-Sun;Kim, Seon-Wook;Kim, Jong-Ok
    • ETRI Journal
    • /
    • v.33 no.3
    • /
    • pp.382-392
    • /
    • 2011
  • This paper proposes the streaming radio frequency identification (RFID) protocol to support robust data streaming in a passive communication, which is extended from the ISO18000-6 Type C RFID standard. By observing and modeling the unique bit error behavior through detailed analysis in this paper, we found that performance is significantly limited by inaccurate and unstable link frequencies as well as low SNR which are inevitable for passive devices. Based on the analysis, we propose a simple and efficient protocol to adaptively insert extra error control sequences in a packet for tolerating tough link condition while maximizing the throughput and preserving the minimal implementation cost. To evaluate effectiveness of our proposal in real-time streaming applications, we experimented on real-time H.264 video streaming and prototyped the system on FPGA. To our best knowledge, our paper is the first work to take analytical approach for maximizing the throughput and demonstrate the possibility of the realtime multimedia streaming transmission in the passive RFID system.

Trust based Secure Reliable Route Discovery in Wireless Mesh Networks

  • Navmani, TM;Yogesh, P
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3386-3411
    • /
    • 2019
  • Secured and reliable routing is a crucial factor for improving the performance of Wireless Mesh Networks (WMN) since these networks are susceptible to many types of attacks. The existing assumption about the internal nodes in wireless mesh networks is that they cooperate well during the forwarding of packets all the time. However, it is not always true due to the presence of malicious and mistrustful nodes. Hence, it is essential to establish a secure, reliable and stable route between a source node and a destination node in WMN. In this paper, a trust based secure routing algorithm is proposed for enhancing security and reliability of WMN, which contains cross layer and subject logic based reliable reputation scheme with security tag model for providing effective secured routing. This model uses only the trusted nodes with the forwarding reliability of data transmission and it isolates the malicious nodes from the providing path. Moreover, every node in this model is assigned with a security tag that is used for efficient authentication. Thus, by combining authentication, trust and subject logic, the proposed approach is capable of choosing the trusted nodes effectively to participate in forwarding the packets of trustful peer nodes successfully. The simulation results obtained from this work show that the proposed routing protocol provides optimal network performance in terms of security and packet delivery ratio.

Multi-Channel Multi-Interface Active RFID Reader and Protocol (다중 채널 다중 인터페이스 능동형 RFID 리더 및 프로토콜)

  • Park, Hyun-Sung;Kim, Dong-Hyun;Chung, Sang-Hwa;Baek, Yun-Ju;Kim, Jong-Doek
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.2
    • /
    • pp.118-129
    • /
    • 2009
  • The ISO 18000-7 Active RFID standard, a single channel system operating in the 433Mhz, faces technical difficulties in supporting some recently introduced application demands because of its low transmission rates and radio interference between readers. We propose a new multi-channel active RFID system operating in the 2.4Ghz. The special feature of the proposed system is that a reader makes use of multiple interfaces to improve its performance like a multi-core processor. However if only a small part of interfaces are actually used, the performance improvement would not meet the expectation. To overcome this problem, a new multi-channel multi-interface active RFID protocol, which balances communication loads among all available interfaces, is necessary. 3 protocols, named as "Aggregated", "LP-Combined", "AP-Balanced", are proposed. Through simulation, we compare them for various conditions by changing number of tags, number of interfaces, tag data size. AP-Balanced shows the best performance and its performance increases almost linearly as the number of interface increases, which meets our expectation.