• Title/Summary/Keyword: systems of linear equations

Search Result 468, Processing Time 0.028 seconds

APPLICATION OF HP-DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS TO THE ROTATING DISK ELECTRODE PROBLEMS IN ELECTROCHEMISTRY

  • Okuonghae Daniel
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.1-20
    • /
    • 2006
  • This paper presents the interior penalty discontinuous Galerkin finite element methods (DGFEM) for solving the rotating disk electrode problems in electrochemistry. We present results for the simple E reaction mechanism (convection-diffusion equations), the EC' reaction mechanism (reaction-convection-diffusion equation) and the ECE and $EC_2E$ reaction mechanisms (linear and nonlinear systems of reaction-convection-diffusion equations, respectively). All problems will be in one dimension.

Dynamic analysis of deployable structures using independent displacement modes based on Moore-Penrose generalized inverse matrix

  • Xiang, Ping;Wu, Minger;Zhou, Rui Q.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1153-1174
    • /
    • 2015
  • Deployable structures have gained more and more applications in space and civil structures, while it takes a large amount of computational resources to analyze this kind of multibody systems using common analysis methods. This paper presents a new approach for dynamic analysis of multibody systems consisting of both rigid bars and arbitrarily shaped rigid bodies. The bars and rigid bodies are connected through their nodes by ideal pin joints, which are usually fundamental components of deployable structures. Utilizing the Moore-Penrose generalized inverse matrix, equations of motion and constraint equations of the bars and rigid bodies are formulated with nodal Cartesian coordinates as unknowns. Based on the constraint equations, the nodal displacements are expressed as linear combination of the independent modes of the rigid body displacements, i.e., the null space orthogonal basis of the constraint matrix. The proposed method has less unknowns and a simple formulation compared with common multibody dynamic methods. An analysis program for the proposed method is developed, and its validity and efficiency are investigated by analyses of several representative numerical examples, where good accuracy and efficiency are demonstrated through comparison with commercial software package ADAMS.

Construction of coordinate transformation map using neural network

  • Lee, Wonchang;Nam, Kwanghee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1845-1847
    • /
    • 1991
  • In general, it is not easy to find the linearizing coordinate transformation map for a class of systems which are state equivalent to linear systems, because it is required to solve a set of partial differential equations. It is possible to construct an arbitrary nonlinear function with a backpropagation(BP) net. Utilizing this property of BP neural net, we construct a desired linearizing coordinate transformation map. That is, we implement a unknown coordinate transformation map through the training of neural weights. We have shown an example which supports this idea.

  • PDF

A guaranteed cost LQ regulator in the presence of parameter uncertainties (파라미터가 불확정된 경우의 guaranteed cost LQ 레귤레이터)

  • 이정문;최계근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.367-369
    • /
    • 1986
  • Guaranteed cost control is a method applicable to a class of systems with uncertain parameters that guarantees an upper bound of the cost functional. This paper is concerned with a matrix decomposition technique used to yield a reasonable upper bound of the cost functional for a finite-time LQ regulator problem. The uncertain linear systems dealt with in this paper are described by a set of state equations of single-input phase-variable canonical form which contain unknown but bounded uncertain parameters.

  • PDF

Optimal Control of Nonlinear Systems Using The New Integral Operational Matrix of Block Pulse Functions (새로운 블럭펄스 적분연산행렬을 이용한 비선형계 최적제어)

  • Cho Young-ho;Shim Jae-sun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.4
    • /
    • pp.198-204
    • /
    • 2003
  • In this paper, we presented a new algebraic iterative algorithm for the optimal control of the nonlinear systems. The algorithm is based on two steps. The first step transforms nonlinear optimal control problem into a sequence of linear optimal control problem using the quasilinearization method. In the second step, TPBCP(two point boundary condition problem) is solved by algebraic equations instead of differential equations using the new integral operational matrix of BPF(block pulse functions). The proposed algorithm is simple and efficient in computation for the optimal control of nonlinear systems and is less error value than that by the conventional matrix. In computer simulation, the algorithm was verified through the optimal control design of synchronous machine connected to an infinite bus.

Optimal Control of Nonlinear Systems Using Block Pulse Functions (블럭펄스 함수를 이용한 비선형 시스템의 최적제어)

  • Jo, Yeong-Ho;An, Du-Su
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.3
    • /
    • pp.111-116
    • /
    • 2000
  • In this paper, we presented a new algebraic iterative algorithm for the optimal control of the nonlinear systems. The algorithm is based on tow steps. The first step transforms optimal control problem into a sequence of linear optimal control problem using the quasilinearization method. In the second step, TPB(two point boundary condition problem) is solved by algebraic equations instead of differential equations using BPF(block pulse functions). The proposed algorithm is simple and efficient in computation for the optimal control of nonlinear systems. In computer simulation, the algorithm was verified through the optimal control design of Van del pole system and Volterra Predatory-prey system.

  • PDF

Bounded multiplier convergent series and its applications

  • Li, Rong-Lu;Cho, Min-Hyung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.215-220
    • /
    • 1992
  • Using a matrix method, pp. Antosik and C. Swartz have obtained a series of nice properties of bounded multiplier convergent (BMC) series on metric linear spaces ([1],[8],[9]). In this paper, we establish a basic property of BMC series on topological vector spaces which is a generalization of a result due to J. Batt([2], Th.2). From this, we have obtained a kind of inclusion theorem of operator spaces. This theorem yields a nice result on infinite systems of linear equations.

  • PDF

Statistical Analysis of Random Parameter Systems with Perturbation Method (퍼터베이션 방법을 이용한 랜덤 파라미터 시스템의 통계적 해석)

  • 김영균
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.19 no.2
    • /
    • pp.1-6
    • /
    • 1982
  • This paper reviews and describes some applications of perturbation theory in the practical analysis of linear systems which involve random parameters. Statistical measures of the system outputs are derived in terms of statistical measures of the system parameters and inputs (i.e., in the way of perturbed linear operator equations). Perturbed state transition matrix is also derived. With simple first-order and second-order linear system models, we compare the accuracy of perturbation results with the exact ones. And the convergence of perturbation series is also investigated.

  • PDF

H Observer Design for Detecting Internal Oil Leakage in a Hydraulic Cylinder (유압실린더 내부 누유 검출을 위한 H 관측기 설계)

  • Jee, Sung Chul;Kang, Hyungjoo;Lee, Mun-Jik;Li, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.2
    • /
    • pp.117-125
    • /
    • 2016
  • This paper presents the internal oil leakage detection problem for a hydraulic double-rod cylinder. We represent the dynamics of the hydraulic cylinder as a convex combination of linear equations. To detect oil leakage, we propose a model-based fault detection observer design scheme. The observer is designed to be robust against disturbance. Sufficient design conditions are derived in the form of linear matrix inequalities. A numerical example is provided to verify the proposed techniques.

Emotional Engine Model based on Linear Dynamic Systems (선형 동적 시스템 기반의 감정 엔진 모델)

  • Ahn, Ho-Seok;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.213-215
    • /
    • 2007
  • This paper introduces an emotional behavior decision model for intelligent service robots. An emotional model should make different behavior decisions according to the purpose of the robots. We propose an emotional behavior decision model which can change the character of emotional model and make different behavior decisions although the situation and environment remain the same. We defined each emotional element such as reactive dynamics, internal dynamics, emotional dynamics, and behavior dynamics by state dynamic equations. The proposed system model is a linear system. If you want to add one external stimulus or behavior, you need to add just one dimensional vector to the matrix of external stimulus or behavior dynamics. The case of removing is same. The change of reactive dynamics, internal dynamics, emotional dynamics, and behavior dynamics also follows the same procedure. We implemented the proposed emotional behavior decision model and verified its performance.

  • PDF