• Title/Summary/Keyword: system uncertainty

Search Result 2,446, Processing Time 0.03 seconds

Soil-structure interaction effect on active control of multi-story buildings under earthquake loads

  • Chen, Genda;Chen, Chaoqiang;Cheng, Franklin Y.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.6
    • /
    • pp.517-532
    • /
    • 2000
  • A direct output feedback control scheme was recently proposed by the authors for single-story building structures resting on flexible soil body. In this paper, the control scheme is extended to mitigate the seismic responses of multi-story buildings. Soil-structure interaction is taken into account in two parts: input at the soil-structure interface/foundation and control algorithm. The former reflects the effect on ground motions and is monitored in real time with accelerometers at foundation. The latter includes the effect on the dynamic characteristics of structures, which is formulated by modifying the classical linear quadratic regulator based on the fundamental mode shape of the soil-structure system. Numerical result on the study of a $\frac{1}{4}$-scale three-story structure, supported by a viscoelastic half-space of soil mass, have demonstrated that the proposed algorithm is robust and very effective in suppressing the earthquake-induced vibration in building structures even supported on a flexible soil mass. Parametric studies are performed to understand how soil damping and flexibility affect the effectiveness of active tendon control. The selection of weighting matrix and effect of soil property uncertainty are investigated in detail for practical applications.

ESTIMATION OF THE POWER PEAKING FACTOR IN A NUCLEAR REACTOR USING SUPPORT VECTOR MACHINES AND UNCERTAINTY ANALYSIS

  • Bae, In-Ho;Na, Man-Gyun;Lee, Yoon-Joon;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.41 no.9
    • /
    • pp.1181-1190
    • /
    • 2009
  • Knowing more about the Local Power Density (LPD) at the hottest part of a nuclear reactor core can provide more important information than knowledge of the LPD at any other position. The LPD at the hottest part needs to be estimated accurately in order to prevent the fuel rod from melting in a nuclear reactor. Support Vector Machines (SVMs) have successfully been applied in classification and regression problems. Therefore, in this paper, the power peaking factor, which is defined as the highest LPD to the average power density in a reactor core, was estimated by SVMs which use numerous measured signals of the reactor coolant system. The SVM models were developed by using a training data set and validated by an independent test data set. The SVM models' uncertainty was analyzed by using 100 sampled training data sets and verification data sets. The prediction intervals were very small, which means that the predicted values were very accurate. The predicted values were then applied to the first fuel cycle of the Yonggwang Nuclear Power Plant Unit 3. The root mean squared error was approximately 0.15%, which is accurate enough for use in LPD monitoring and for core protection that uses LPD estimation.

TREATING UNCERTAINTIES IN A NUCLEAR SEISMIC PROBABILISTIC RISK ASSESSMENT BY MEANS OF THE DEMPSTER-SHAFER THEORY OF EVIDENCE

  • Lo, Chung-Kung;Pedroni, N.;Zio, E.
    • Nuclear Engineering and Technology
    • /
    • v.46 no.1
    • /
    • pp.11-26
    • /
    • 2014
  • The analyses carried out within the Seismic Probabilistic Risk Assessments (SPRAs) of Nuclear Power Plants (NPPs) are affected by significant aleatory and epistemic uncertainties. These uncertainties have to be represented and quantified coherently with the data, information and knowledge available, to provide reasonable assurance that related decisions can be taken robustly and with confidence. The amount of data, information and knowledge available for seismic risk assessment is typically limited, so that the analysis must strongly rely on expert judgments. In this paper, a Dempster-Shafer Theory (DST) framework for handling uncertainties in NPP SPRAs is proposed and applied to an example case study. The main contributions of this paper are two: (i) applying the complete DST framework to SPRA models, showing how to build the Dempster-Shafer structures of the uncertainty parameters based on industry generic data, and (ii) embedding Bayesian updating based on plant specific data into the framework. The results of the application to a case study show that the approach is feasible and effective in (i) describing and jointly propagating aleatory and epistemic uncertainties in SPRA models and (ii) providing 'conservative' bounds on the safety quantities of interest (i.e. Core Damage Frequency, CDF) that reflect the (limited) state of knowledge of the experts about the system of interest.

Evaluation of nuclear material accountability by the probability of detection for loss of Pu (LOPu) scenarios in pyroprocessing

  • Woo, Seung Min;Chirayath, Sunil S.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.198-206
    • /
    • 2019
  • A new methodology to analyze the nuclear material accountability for pyroprocessing system is developed. The $Pu-to-^{244}Cm$ ratio quantification is one of the methods for Pu accountancy in pyroprocessing. However, an uncertainty in the $Pu-to-^{244}Cm$ ratio due to the non-uniform composition in used fuel assemblies can affect the accountancy of Pu. A random variable, LOPu, is developed to analyze the probability of detection for Pu diversion of hypothetical scenarios at a pyroprocessing facility considering the uncertainty in $Pu-to-^{244}Cm$ ratio estimation. The analysis is carried out by the hypothesis testing and the event tree method. The probability of detection for diversion of 8 kg Pu is found to be less than 95% if a large size granule consisting of small size particles gets sampled for measurements. To increase the probability of detection more than 95%, first, a new Material Balance Area (MBA) structure consisting of more number of Key Measurement Points (KMPs) is designed. This multiple KMP-measurement for the MBA shows the probability of detection for 8 kg Pu diversion is greater than 96%. Increasing the granule sample number from one to ten also shows the probability of detection is greater than 95% in the most ranges for granule and powder sizes.

Comparing type-1, interval and general type-2 fuzzy approach for dealing with uncertainties in active control

  • Farzaneh Shahabian Moghaddam;Hashem Shariatmadar
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.199-212
    • /
    • 2023
  • Nowadays fuzzy logic in control applications is a well-recognized alternative, and this is thanks to its inherent advantages. Generalized type-2 fuzzy sets allow for a third dimension to capture higher order uncertainty and therefore offer a very powerful model for uncertainty handling in real world applications. With the recent advances that allowed the performance of general type-2 fuzzy logic controllers to increase, it is now expected to see the widespread of type-2 fuzzy logic controllers to many challenging applications in particular in problems of structural control, that is the case study in this paper. It should be highlighted that this is the first application of general type-2 fuzzy approach in civil structures. In the following, general type-2 fuzzy logic controller (GT2FLC) will be used for active control of a 9-story nonlinear benchmark building. The design of type-1 and interval type-2 fuzzy logic controllers is also considered for the purpose of comparison with the GT2FLC. The performance of the controller is validated through the computer simulation on MATLAB. It is demonstrated that extra design degrees of freedom achieved by GT2FLC, allow a greater potential to better model and handle the uncertainties involved in the nature of earthquakes and control systems. GT2FLC outperforms successfully a control system that uses T1 and IT2 FLCs.

A Systems Engineering Approach to Ex-Vessel Cooling Strategy for APR1400 under Extended Station Blackout Conditions

  • Saja Rababah;Aya Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.32-45
    • /
    • 2023
  • Implementing Severe Accident Management (SAM) strategies is crucial for enhancing a nuclear power plant's resilience and safety against severe accidents conditions represented in the analysis of Station Blackout (SBO) event. Among these critical approaches, the In-Vessel Retention (IVR) through External Reactor Vessel Cooling (IVR-ERVC) strategy plays a key role in preventing vessel failure. This work is designed to evaluate the efficacy of the IVR strategy for a high-power density reactor APR1400. The APR1400's plant is represented and simulated under steady-state and transient conditions for a station blackout (SBO) accident scenario using the computer code, ASYST. The APR1400's thermal-hydraulic response is analyzed to assess its performance as it progresses toward a severe accident scenario during an extended SBO. The effectiveness of emergency operating procedures (EOPs) and severe accident management guidelines (SAMGs) are systematically examined to assess their ability to mitigate the accident. A group of associated key phenomena selected based on Phenomenon Identification and Ranking Tables (PIRT) and uncertain parameters are identified accordingly and then propagated within DAKOTA Uncertainty Quantification (UQ) framework until a statistically representative sample is obtained and hence determine the uncertainty bands of key system parameters. The Systems Engineering methodology is applied to direct the progression of work, ensuring systematic and efficient execution.

Predictive Model for Evaluating Startup Technology Efficiency: A Data Envelopment Analysis (DEA) Approach Focusing on Companies Selected by TIPS, a Private-led Technology Startup Support Program

  • Jeongho Kim;Hyunmin Park;JooHee Oh
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.2
    • /
    • pp.167-179
    • /
    • 2024
  • This study addresses the challenge of objectively evaluating the performance of early-stage startups amidst limited information and uncertainty. Focusing on companies selected by TIPS, a leading private sector-driven startup support policy in Korea, the research develops a new indicator to assess technological efficiency. By analyzing various input and output variables collected from Crunchbase and KIND (Korea Investor's Network for Disclosure System) databases, including technology use metrics, patents, and Crunchbase rankings, the study derives technological efficiency for TIPS-selected startups. A prediction model is then developed utilizing machine learning techniques such as Random Forest and boosting (XGBoost) to classify startups into efficiency percentiles (10th, 30th, and 50th). The results indicate that prediction accuracy improves with higher percentiles based on the technical efficiency index, providing valuable insights for evaluating and predicting startup performance in early markets characterized by information scarcity and uncertainty. Future research directions should focus on assessing growth potential and sustainability using the developed classification and prediction models, aiding investors in making data-driven investment decisions and contributing to the development of the early startup ecosystem.

Comparison of the standards for absorbed dose to water of the IAEA and the KRISS, Korea in accelerator photon beams

  • L. Czap;I.J. Kim;J.I. Park;C.-Y. Yi;Y. Kim;Z. Msimang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2698-2703
    • /
    • 2024
  • A bilateral comparison was conducted between the International Atomic Energy Agency (IAEA) and the Korea Research Institute of Standards and Science (KRISS) to measure the absorbed dose to water in accelerator photon beams. KRISS served as a linking laboratory to compare the IAEA standard with the key comparison reference value (KCRV) of the BIPM.RI(I)-K6 program, in which KRISS participated in 2017. Two ionization chambers from the IAEA were used as transfer instruments for the comparison. Both laboratories measured the calibration coefficients of these instruments and calculated the ratios. The ratio of the KRISS standard to the KCRV was applied to obtain the degree of equivalence of the IAEA, along with its uncertainty. The largest deviation of the IAEA measurement from the KCRV was 3.4 mGy/Gy, significantly smaller than the expanded uncertainty of 10.7 mGy/Gy (k = 2, 95% level of confidence). This study demonstrates the equivalence of IAEA's measurement standard for accelerator photon beams to other primary standard dosimetry laboratories. It provides evidence for the satisfactory operation of IAEA's quality management system and enhances the international credibility of the IAEA SSDL network, particularly in high-energy accelerator photon beams from linear accelerators.

The division of action situation of collision avoidance in intelligent collision avoidance system

  • Zheng, Zhongyi;Wu, Zhaolin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2001.10a
    • /
    • pp.114-119
    • /
    • 2001
  • Based on tole investigation on mariner’s behaviors in collision avoidance, actuality of collision avoidance at sea and the research on the uncertainty of collision avoidance behaviors adopted by two encounter vessels, and for the purpose to reduce the no-coordination action of collision avoidance between two encounter vessels, and on the base of different encounter situation in international convention for preventing collisions at sea, the concept of action situation between tee encounter vessels is proposed, and the directions for every encounter vessel to adopt course alteration to avoid collision are explained in different action situation. The mechanism of avoidance and reduction of no-coordination is established in intelligent collision avoidance system, and it is important id research on intelligent collision avoidance system.

  • PDF

Review of the tracebility of ERA PD measuring system in test laboratory (시험소 부분방전 측정시스템(ERA)의 소급성검토)

  • Heo, J.C.;Kang, Y.S.;Kim, W.Y.;Oh, C.S.;Park, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1969-1971
    • /
    • 2004
  • For evaluation of partial discharge performances of electrical power appratus such as Insulator, circuit breaker and transformer and so on, Partial discharge measuring system(ERA) consisted of PD detector including amplifier, coupling capacitor, PD calibrator and voltage divider are used PD measuring system is very important factor which affect the test result and show reliability of test result in test laboratory, In this paper, we describe tracebility and uncertainty of PD measuring system in test laboratory based on IEC 60270.

  • PDF