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Knowing more about the Local Power Density (LPD) at the hottest part of a nuclear reactor core can provide more important
information than knowledge of the LPD at any other position. The LPD at the hottest part needs to be estimated accurately in order
to prevent the fuel rod from melting in a nuclear reactor. Support Vector Machines (SVMs) have successfully been applied in
classification and regression problems. Therefore, in this paper, the power peaking factor, which is defined as the highest LPD to
the average power density in a reactor core, was estimated by SVMs which use numerous measured signals of the reactor coolant
system. The SVM models were developed by using a training data set and validated by an independent test data set. The SVM
models’ uncertainty was analyzed by using 100 sampled training data sets and verification data sets. The prediction intervals were
very small, which means that the predicted values were very accurate. The predicted values were then applied to the first fuel cycle
of the Yonggwang Nuclear Power Plant Unit 3. The root mean squared error was approximately 0.15%, which is accurate enough

for use in LPD monitoring and for core protection that uses LPD estimation.
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1. INTRODUCTION

The monitoring of detailed 3-Dimensional (3D) core
power distribution is a prerequisite for the operation of
nuclear power reactors to ensure that various safety limits
imposed on the fuel pellets and fuel clad barriers, such as
the Local Power Density (LPD) and the Departure from
the Nucleate Boiling Ratio (DNBR), are not violated during
the reactor’s operation.

The LPD and DNBR need to be calculated in order to
perform the two major functions of the Core Protection
Calculator System (CPCS) and the Core Operation Limit
Supervisory System (COLSS) [1], each of which plays a
role in the protection and monitoring systems of the
Optimized Power Reactor 1000 (OPR1000) and the
Advanced Power Reactor 1400 (APR1400). After the CPCS
calculates safety-critical parameters, such as the LPD and
the DNBR, it protects a nuclear reactor by tripping the
reactor when its operating limits are exceeded. On the other
hand, after the COLSS calculates the parameters of interest,
such as the LPD and the DNBR, by using algorithms that
are different from those of the CPCS, it helps plant operators

to monitor the Limiting Conditions for Operation (LCOs)
specified in the technical specifications.

The LPD needs to be estimated accurately to prevent
nuclear fuel rods from melting. The LPD at the hottest
part of a hot fuel rod, which is related to the Power Peaking
Factor (PPF, F,), is more important than the LPD located
at any other position in the reactor core. On-line monitoring
techniques that use artificial intelligence and its applications
to the nuclear engineering field have been explained and
reviewed by Garvey et al. [2] and Heo [3]. A lot of research
[4-12] has been performed to calculate safety-critical
parameters, such as the DNBR and the LPD, by using
artificial intelligence methods that have been extensively
used in a variety of engineering problems.

Support Vector Machines (SVMs) have been applied
to classification problems. However, along with the
introduction of Vapnik’s ¢-insensitive loss function [13],
SVMs have also been extended and been widely used to
solve nonlinear regression estimation problems. In SVM
regression, the input data is mapped onto a high dimensional
feature space, and subsequently, the linear regression is
carried out in the feature space.
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The objective of this paper is to predict the PPF in a
reactor core by using measured signals of the reactor
coolant system and by applying SVMs according to the
operating conditions. A quantitative analysis was also
conducted to predict the uncertainty. This paper partly
deals with the regression model by using SVMs to estimate
the LPD, which has been the subject of prior research
[12]. Furthermore, this paper builds on prior research by
analyzing the uncertainty of the PPF estimates.

The output and input data employed in this study were
the PPF values in the reactor core and numerous measurement
signals, which are characterized by the reactor power, core
inlet temperature, pressurizer pressure, coolant flowrate
of the reactor core, Axial Shape Index (ASI), a variety of
control rod positions, and incore neutron detector signals.
The PPF values in the reactor core were estimated by the
developed SVM models by using these various measurement
data as the input to the SVM models. The proposed PPF
estimation algorithm was verified by using nuclear and
thermal data acquired from many numerical simulations
of the Yonggwang Nuclear Power Plant Unit 3 (YGN-3).

2. AREGRESSION MODEL THAT USES SUPPORT
VECTOR MACHINES

SVMs are learning systems that use the hypothesis
space of linear functions in a high dimensional feature
space. They are optimized with a learning algorithm that
originates from the theoretical foundations of statistical
learning theory and Structural Risk Minimization (SRM).
Artificial Neural Networks (ANNs) use a traditional
Empirical Risk Minimization (ERM) principle to minimize
the estimation errors on the training data [14]. On the
other hand, SVMs use an SRM principle to minimize the
upper bound on the expected risk, which is the sum of
the empirical risk and of the confidence interval [15].
The different method of risk minimization used in SVMs
leads to a better generalization performance of SVMs
compared with ANNs [15]. SVMs can be well applied to
regression and classification problems.

An SVM is given N training data points {(x.,,)}L,E
R"X R, where x; is the input vector to the SVM, and y; is
the actual output value, from which it learns an input-
output relationship. The SVM regression model can be
expressed as follows [16]:

y=100=2wh(0)=wo()+b (n)

Equation (1) is a nonlinear regression model because
the resulting hyper-surface is a nonlinear surface that
hangs over the m-dimensional input space. However, after
the input vectors x are mapped into the vectors @(x) of a

high dimensional kernel-induced feature space, the nonlinear
regression model is turned into a linear regression model
in the feature space. Therefore, a nonlinear function is
learned by using a linear learning machine of which the
learning algorithm minimizes a convex functional. The
convex functional is expressed as the following regularized
risk function, and the parameters w and b are the support
vector weight and bias that are calculated by minimizing
the risk function:

Row) =2 wiw 23 13- 1, @
where
o if [y, -f(x)|<¢
bi=f ), = {lyi -f(x)|-¢ otherwise S

The regularized risk function of Eq. (2) consists of two
terms: the first term is a weight vector norm and the second
term is an estimation error. The two design parameters
for the SVM regression model are the insensitivity zone ¢
and the regularization parameter A. The regularization
parameter determinges the trade-off between the estimation
error and the weight vector norm. An increase in the
regularization parameter penalizes larger errors, which
leads to a decrease in the estimation error. This can also
be achieved easily by increasing the weight vector norm.
However, an increase in the weight vector norm does not
ensure good generalization of the SVM regression model.
This generalization property is of particular interest to
data-based model development because a good model is
not a model that performs well on only training data, but
a model that performs well even on other data which is
not training data.

[vi—AX)|- is called the e-insensitive loss function [15].
The loss is equal to zero if the predicted value, f(x), falls
within the insensitivity zone. For all predicted points
outside the insensitivity zone, the loss is equal to the
magnitude of the difference between the predicted value
and the insensitivity zone boundary [refer to Fig. 1].
Increasing the insensitivity zone means a reduction in the
requirements for the accuracy of the estimation and a
decrease in the number of Support Vectors (SVs), leading
to data compression. In addition, as seen in Fig. 1, increasing
the insensitivity zone has smoothing effects on the modeling
of highly noisy polluted data.

The regularized risk function of Eq. (2) is converted
into the following constrained risk function:

Rw&E)=3wWw+3 (5 +£) @
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Fig. 1. Parameters for the SVM Model [21]

y-weox)-b<se+&, i=12,--\N
subject to the constraints {W'@(x)+b~y, <e+&, i=1,2,--.N (5)
é’: é’ZO, i:1,2,~~-,N

where

&=[& & &7,
g=[g & - &l

The parameters & and & are the slack variables that
represent the upper and lower constraints on the output of
the system, respectively, and are positive values [refer to
Fig. 1].

The constrained optimization problem of Eq. (4) can
be solved by applying the Lagrange multiplier technique
to Egs. (4) and (5), and by using a standard quadratic
programming technique. Finally, the regression function
of Eq. (1) becomes

y=1(0= 20" ()00 +b=2 AK(xx) b, (6)

where K(x,x,)= @ (x;)@(x) is known as the kemnel function,
and the coefficient f; is a function of the Lagrange multipliers
o and «;; Bi= a;— . In this paper, the SVMs use the
following radial basis kernel function:

K(x,x,>=exp[~ﬂ‘%§:—"i]- %

A lot of the coefficients f8; are nonzero values, and
the training data points that correspond to the nonzero
values, which are known as SVs, have an estimation error
that is greater than or equal to the insensitivity zone.

3. UNCERTAINTY ANALYSIS

When SVM regression models are used to estimate
safety-critical parameters, such as the LPD, the model
estimates require an uncertainty analysis to determine
how accurate the predictions of the data-based models
are. Through an uncertainty analysis, a prediction interval
can be calculated such that the exact value exists in the
prediction interval at a specified confidence level.

There are several possible sources of uncertainty in
predictions that use data-based models. This includes
selection of training data, model structure that includes
complexity, and noise in the input variables and the output
variables [17]. Since an SVM model is developed by using
a given training data set, each possible training data set
that is selected from the entire population of data will
generate a different model, resulting in a distribution of
predictions for a given observation. Model misspecification
may also take place when a model structure is not correct,
thereby introducing a bias.

3.1 Bootstrap Method

The bootstrap method works by generating many
bootstrap samples of the training data set and by retraining
the SVM model parameters on each bootstrap sample.
After repetitive sampling and training, the resulting
predictions can provide a distribution for the LPD value.
This distribution can be used to calculate prediction
intervals. There are two general algorithms for the bootstrap
method: bootstrap pairs sampling and bootstrap residual
sampling. In this paper, the bootstrap pairs sampling
algorithm was used. The available data were divided into
development data and test data. The development data
consisted of a large pool of data from which training and
verification samples were drawn. The test data were fixed.
Uncertainty was separated into two types: variability and
bias. The calculation steps of the bootstrap pairs sampling
algorithm are as follows [18]:

1) Generate J samples (J=100 in this paper) from the
development data, each one of size N that was drawn
with replacement from the N training data {(Xi,11),(X2,)2),
...,(xv,yw)}. Denote the j-th sample by {(x/y/).(x/,}7).
G AR

2) For each bootstrap sample, an SVM regression model
was obtained.

3) Estimate the variance and the bias of the i-th predicted
value by

-

J 2

N 1 an: R = 1 o,
Var‘(yi)=J—_1§[)’i' ‘y,} where , =—J~;y/ )
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1 " 1 7 N . 9 12
bias={—n-§72[}’,-] —ny] }

=

where 7 is the number of the development data. ®

The pool of development data represents all of the
available data, excluding the defined set of fixed test data.
Since the bias estimates based on the training data can be
much lower than the bias estimates that are based on an
independent set of data, especially in the case of an overfit
model, one should compute bias estimates based on the
data pool rather than the training data. The estimate with
a 95% confidence interval for an arbitrary test input x, is

o £2Var (5, ) +bias’ = 5, £5. (10)
3.2 Analytic Method
The regression model of Eq. (6) is rewritten as
Y= f(x,0)+¢, an
where
0-[ o - 6.][A A -5, 0]

Here, p is the number of the nonzero B in Eq. (6), which
is the same as the number of SVs. For a regression model
(0 =f{X0,8)+ &) of an observation x,, which is not part of
the training data, the output prediction is given by

Fo=£(X,,8). (12)

Using the Taylor series expansion of the output prediction
to the first order, the output prediction can be approximated
as follows:

Bom f(x,0)+1; -[6-0], (13)
where
r_ af(xoae) af(xoae) af(xo,())
f ‘[ %6, o6, %,, ) (14)

Then the prediction error of the SVM model can be
calculated as

Yo=Fo=8 1] -[0-8]. as)
The variance of the prediction error is written as
Var(y, ~}0)=Var(£0)+Var(f0’ -[é~o]), (16)

where

&, ~ N(0,0%) and [é—o} =N(0,S).

In the SVM model, since the parameter 0 is not solved
explicitly, and is calculated implicitly with a standard
quadratic programming technique in order to minimize the
constrained risk function of Eq. (4), the variance-covariance
matrix S is not calculated. However, if the parameter is
assumed to be estimated explicitly with the well-known
squared error minimization technique, the variance-
covariance matrix can be estimated as follows [18]:

s=s*(F'F)", amn

where

n 2
s

st = n—;—lé(yi "f(xi’é))

The matrix F is called the Jacobian matrix of the first order
partial derivatives with respect to the parameters determined
from the least squares.

The variance of the predicted output error can be
estimated as follows [18]:

Var(y, — y,) =~ o> +118f, = s* +5°f] (F'F ‘lfo- (18)
yo 0 0
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The estimate with a 95% confidence interval is

(19)

Byt 2s\14+£] (F'F) 1, = 5, £5.

4. APPLICATION TO PPF ESTIMATION

The proposed SVM was applied to the first fuel cycle
of the YGN-3 PWR plant. The data that were used was
obtained by running the MASTER (Multipurpose Analyzer
for Static and Transient Effects of Reactor) [19] reactor
analysis and design code. The MASTER code, which
was developed by the Korea Atomic Energy Research
Institute, was interfaced with the COBRA code for thermo-
hydraulic calculations.

The data obtained from the simulations of the MASTER
code comprised a total of 25541 input-output data points
(x1,%2,. .. X11,)r) OF (X1,%2,...,X16,V,), depending on whether
the SPND signals were used or not. In the OPR1000
nuclear power plants, the CPCS and the COLSS calculate
the LPD in order to protect and monitor nuclear plants.
The SPNDs, which are incore neutron detectors, have
slow response characteristics. The CPCS should calculate
safety-critical parameters faster than the COLSS, and
thus, can protect a nuclear reactor safely from sudden
accidents. Therefore, the CPCS cannot use the SPND
signals, while the COLSS can use the SPND signals.
Since the proposed estimation models can be applied to

Table 1. Input and Output Signal Ranges [11]

protection and monitoring systems, two cases were
considered, one in which the SPND signals were utilized
and one in which they were not. When the SPND signals
are not used, the proposed algorithm can be utilized as a
protection algorithm. x, through xs represent the reactor
power, core inlet temperature, coolant pressure, mass
flowrate, ASI, R1, R2, R3, R4, RS, P control rod positions,
and 5 SPND signals (at the 5 axial levels of the center
core). ASI can also be written as (Ps—P)/(Ps+Pr), where
Py is the bottom-half power of the nuclear reactor, and Pr
is the top-half power. y, is the PPF in the reactor core. R1
through R5 and P are the names of the control rod groups.

The ranges of the input and output signals that were
used for training in this paper are described in Table 1.
Two SVMs are optimized for two kinds of data sets, the
positive (relatively high power at the top part of the reactor
core) ASI cases (12765 data points) and the negative ASI
cases (12776 data points). This results in smaller errors
compared to using only one summed data set All of the
acquired data of the positive or negative ASI cases were
divided into a training data set, a verification data set, and
a test data set. The test data were selected every fixed
data interval (50 fixed data intervals). The test data set
comprised of 256 data points.

The training data were selected by using a Subtractive
Clustering (SC) scheme [20] after the test data were
removed from the pool of acquired data. A SVM regression
model can be optimized well by using informative data.
Since the nuclear reactor system is very complex and the
acquired data should cover the entire range of the operating
conditions, it was expected that the input and output

Input signals Nominal values Ranges
Reactor power (%) 100% 80 ~103
Inlet temperature (°C) 295.8 290.5 ~301.7
Pressure (bar) 155.17 131.0 ~160.0
Mass flowrate (kg/m?-sec) 3565.0 2994.6 ~4135.4
Axial shape index - 0.597 ~-0.534
R1 control rod positions (cm) - 0~381

R2 control rod positions (cm) - 0~381

R3 control rod positions (cm) - 0~381

R4 control rod positions (cm) - 0~381

RS control rod positions (cm) - 0~381

P control rod positions (cm) - 0~381
SPND signals (3 axial positions of a core center) - 7.4 ~322.0
Output signal Nominal value Range
Power peaking factor - 1.930 ~ 4.066
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training data had a lot of clusters and the data at these
cluster centers were more informative than the neighboring
data. The 100 training data samples were selected by
changing the radius of the SC scheme randomly in a
specified range. The cluster centers for each data sample

Table 2. Number of Support Vectors (SVs)

Use of SPND signals Sign of ASI No. of SV
Negative 350
No —
Positive 316
Negative 349
Yes
Positive 346

were discovered by an SC scheme and were used as the
training data set. The training data set was comprised of
1000 data points among the 12765 or 12776 data points,
for positive or negative ASI cases, respectively. The
verification data consisted of all the remaining data after
the removal of the test data. Table 2 shows the number of
support vectors of the SVM regression models that were
used for each data case. The SVs were selected from the
1000 training data points by the SVM algorithms.

Figure 2(a) shows the histogram of the exact (target)
PPF values for 12520 verification data points that have
negative ASI. Figure 2(b) shows the histogram of exact
(target) PPF values for 12509 verification data points that
have positive ASI. As can be seen in Fig. 2, PPF values
are sparsely distributed for positive ASI data cases. Table
3 shows the calculation results when the SPND signals
were not used. The Root Mean Squared (RMS) error is
0.14% and the maximum error is 1.26% for all of the

Table 3. PPF Calculation Results by the SYM Model when the SPND Signals were not used

Training data All data except test data Test data
Relati i i
No. of data © .a e RMS error | No. of data Relfmve RMS error | No. of data Rel.atlve RMS error
points maxtmum (%) points maximum (%) points maximum %)
error (%) error (%) error (%)
Negative ASI 1000 0.7943 0.0756 12520 1.2613 0.1380 256 0.5174 0.1367
Positive ASI 1000 0.2560 0.1379 12509 0.8571 0.1561 256 0.6971 0.1642
Total 2000 0.7943 0.1112 25029 1.2613 0.1473 512 0.6971 0.1511
2500 2500
Q
2000 - N 2000
N
1500 - 1500
» R
c N E
1000 N © 1000 S
N
500 500
N
¢} 1 0
2.0 25 4.0 15 20 ' 40
PPF value PPF value

(a) histogram for negative ASI

(b) histogram for positive ASI

Fig. 2. Histogram for Actual PPF Values
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data, except for the test data that have negative ASIL. The
RMS error is 0.16% and the maxinmum error is 0.86% for
all of the data, except for the test data that have positive
ASI. The RMS error is 0.14% and the maximum error is
0.52% for the test data that have negative ASI. The RMS
error is 0.16% and the maximum error is 0.70% for the
test data that have positive ASL. If we consider the relative
RMS error together for both the test data sets that have
positive and negative ASIs (see Table 3), the RMS error
is 0.15%.

Table 4 shows the calculation results when the SPND
signals were used. The RMS error is 0.10% and the
maximum error is 1.72% for all of the data, except for
the test data that have negative ASI. The RMS error is
0.32% and the maximum error is 1.56% for all of the
data, except for the test data that have positive ASI. The
RMS error is 0.09% and the maximum error is 0.33% for
the test data that have negative ASI. The RMS error is

0.29% and the maximum error is 1.20% for the test data
that have positive ASL If we consider the relative RMS
error together for both test data sets that have positive
and negative ASIs (see Table 4), the RMS error is 0.21%.
When we used SPND signals as input to SVMs, the
performance of the SVMs improved, in particular in
cases that have negative ASI (refer to Tables 3 and 4).
The data with positive ASI are more sparsely distributed
(refer to Fig. 2), which indicates that the SPND signals
do not contribute in improving the performance of SVMs
for data that have positive ASIL.

Figures 3 through 6 show the estimation errors and
their prediction intervals. In order to conduct an uncertainty
analysis by the bootstrap method, 100 sample sets for
training and verification were selected by randomly
adjusting the radius r. of the SC scheme in a specified
range. In these figures, d indicates the prediction interval
for Egs. (10} and (19). As can be seen in Figs. 3 through

Table 4. PPF Calculation Results by the SYM Model when the SPND Signals were used

Training data All data except test data Test data
i Relati Relati
No. of data Relfmve RMS error | No. of data © ?twe RMS error | No. of data © ? Ve RMS error
points maximum %) points maximum %) points maximum %)
3 error (%) ’ error (%) error (%)
;Negative ASI 1000 0.2169 0.0676 12520 1.7159 0.0997 256 0.3275 0.0911
. Positive ASI 1060 0.2486 0.1450 12509 1.5590 0.3201 256 1.1957 0.2855
" Total 2000 0.2486 01131 25029 1.7159 0.2371 512 1.1957 0.2119
0.020
0.015
©
S T
T 5
2 0010 €
] e
2 5
3 2
° 3
| 0.005 &
- Bootstrap
-1.8 4 —A— Analytic
20 ——y . ; 0.000
0 50 100 150 200 250
cases
Fig. 3. Prediction Intervals of the SVM Model for Negative AST (Without SPND Signals)
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Fig. 4. Prediction Intervals of the SVM Model for Positive ASI (Without SPND Signals)

A Analytic 1

relative error (%)
prediction interval (3)

0.01

2 . . ; " . . . . 0.00
0 50 100 150 200 250
cases
Fig. 5. Prediction Intervals of the SVM Model for Negative ASI (With SPND Signals)

~=— Bootsrap

—A— Analytic

relative error (%)

0.02

prediction intervat (5)

. . 0.01
200 250

0 50 10 150
cases
Fig. 6. Prediction Intervals of the SVM Model for Positive ASI (With SPND Signals)
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Table 5. Comparison of Calculated PPF Values

ASI value Power MASTER (target) SVM Model (with SPND) COLSS
0.081 80 1.968 1.968 2.133
0.094 90 1.959 1.964 2.135
0.069 100 1.952 1.956 2.137
0.073 103 1.949 1.953 2.138
-0.525 80 2.778 2.779 3.000
-0.504 90 2.718 2.719 2.961
-0.483 100 2.663 2.663 2.918
-0.520 103 2.646 2.646 2.905
PID@  COLSS lookup scheme from the F, values that were prepared at

Fig. 7. Pseudo Hot Pin Axial Power Distribution of COLSS [11]

6, the prediction intervals are very small, which means
that the predicted values are very accurate. The prediction
intervals of the analytic method are also similar to those
of the bootstrap method. The prediction intervals of the
bootstrap method can have very high peak values at several
test data points because the SVM regression models that
were developed by 100 random sample training data sets
have a large variance at the test data points.

Table 5 shows other test results that compare the PPF
values that were calculated from the proposed SVM
method and the COLSS method. The PPF values of the
COLSS method were obtained by multiplying the core
average axial power P1D(z) with the plane-wise (radial
direction) peaking factor F;, of the corresponding regions
and by then selecting the maximum value of the multiplication
(refer to Fig. 7). In the COLSS method, the plane-wise
peaking factors are prepared and provided at the design
stage according to a variety of control rod configurations.
For example, for the control rod configurations of Fig. 7,
each F,, value for 3 different regions is selected by a table
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the design stage. However, in the MASTER code, the
plane-wise peaking factors of the real reactor core state
were used to calculate the PPF value. Therefore, when
the proposed SVM regression model accurately estimated
the target PPF values, it always provided smaller PPF
values than the COLSS method. The COLSS method is
always excessively conservative when compared with the
proposed SVM method, as shown in Table 5. The CPCS
and the COLSS are a protection system and a monitoring
system for OPR1000 reactors (CE type plants), respectively.
The CPC algorithm is more conservative than the COLSS
algorithm. Therefore, the PPF values of the CPCS are
larger than those of COLSS. The PPF values of the proposed
algorithm were compared with those of the COLSS and
it is confirmed that the PPF values of the proposed
algorithm were smaller than those of COLSS, which
means that the proposed algorithm provides a higher
operation margin than the CPCS as well as the COLSS.

It is well-known that the RMS error that was calculated
by the SVM regression model for the test data is similar
to the RMS error for the verification data (see Tables 3
and 4). Therefore, if the SVM regression models are first
optimized by using data for a variety of operating conditions,
they can accurately estimate PPFs for other operating
conditions.

5. CONCLUSIONS

In this paper, the SVM regression models were
developed and applied in order to estimate the PPF in the
reactor core. The SVM regression models were optimized
by using the data set that was prepared as training data
and tested by using another data set (test data) that was
different from the training data. Two SVM regression
models were also optimized for two kinds of data sets
that were divided into both positive ASI and negative
ASI, respectively. The developed SVMs were applied to
the first fuel cycle of YGN-3. The RMS error of the
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estimated PPF values was about 0.15%. In addition, their
uncertainty was analyzed by a bootstrap method that used
100 sampled training data sets and verification data sets
and was analyzed by an analytical method. The prediction
intervals were very small, which means that the predicted
values are very accurate. In summary, the SVM regression
models are accurate enough for use in core protection and
monitoring that uses power peaking factors.
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