• Title/Summary/Keyword: system uncertainty

Search Result 2,446, Processing Time 0.045 seconds

Use of Dynamic Reliability Method in Assessing Accident Management Strategy

  • Jae, Moosung
    • International Journal of Reliability and Applications
    • /
    • v.2 no.1
    • /
    • pp.27-36
    • /
    • 2001
  • This Paper proposes a new methodology for assessing the reliability of an accident management, which Is based on the reliability physics and the scheme to generate dynamic event tree. The methodology consists of 3 main steps: screening; uncertainty propagation; and probability estimation. Sensitivity analysis is used for screening the variables of significance. Latin Hypercube sampling technique and MAAP code are used for uncertainty propagation, and the dynamic event tree generation method is used for the estimation of non-success probability of implementing an accident management strategy. This approach is applied in assessing the non-success probability of implementing a cavity flooding strategy, which is to supply water into the reactor cavity using emergency fire systems during the sequence of station blackout at the reference plant.

  • PDF

Analysis of Lead Time Distribution with Order Crossover (교차주문을 갖는 리드타임 분포의 분석)

  • Kim, Gitae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.220-226
    • /
    • 2021
  • In supply chain, there are a variety of different uncertainties including demand, service time, lead time, and so forth. The uncertainty of demand has been commonly studied by researchers or practitioners in the field of supply chain. However, the uncertainty of upstream supply chain has also increased. A problem of uncertainty in the upstream supply chain is the fluctuation of the lead time. The stochastic lead time sometimes causes to happen so called the order crossover which is not the same sequences of the order placed and the order arrived. When the order crossover happens, ordinary inventory policies have difficult to find the optimal inventory solutions. In this research, we investigate the lead time distribution in case of the order crossover and explore the resolutions of the inventory solution with the order crossover.

Stabilizing control of uncertain system with pole estimation (시스템 극점 추정에 의한 불확실한 시스템의 안정화 제어)

  • 이장규;한형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.435-438
    • /
    • 1990
  • A new robust stabilizing method of uncertain system is proposed. The model uncertainty is considered to be the system matrix perturbations. The region of perturbed system eigenvalues are estimated by union of the disks which have the constant radius. Full state feedback control matrix which satisfies the new stabilization condition can be obtained by weighted LQ regulator or pole assignment technique.

  • PDF

Improvement Sugestion For Pine-Mushroom (Trichroma matsutake) Bidding System (기술사마당: 제언 - 생송이버섯 공판제도에 대한 개선방향 제언)

  • Chun, Myung-Seog
    • Journal of the Korean Professional Engineers Association
    • /
    • v.43 no.5
    • /
    • pp.56-59
    • /
    • 2010
  • Pine-Mushroom(Trichroma matsutake) Bidding System was faced with a difficult question. Both producers and consumers are required to meet improvement. Classification system has been improved with the digital system. Standard uncertainty is likely to be clearly established.

  • PDF

VALIDATION OF ON-LINE MONITORING TECHNIQUES TO NUCLEAR PLANT DATA

  • Garvey, Jamie;Garvey, Dustin;Seibert, Rebecca;Hines, J. Wesley
    • Nuclear Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.133-142
    • /
    • 2007
  • The Electric Power Research Institute (EPRI) demonstrated a method for monitoring the performance of instrument channels in Topical Report (TR) 104965, 'On-Line Monitoring of Instrument Channel Performance.' This paper presents the results of several models originally developed by EPRI to monitor three nuclear plant sensor sets: Pressurizer Level, Reactor Protection System (RPS) Loop A, and Reactor Coolant System (RCS) Loop A Steam Generator (SG) Level. The sensor sets investigated include one redundant sensor model and two non-redundant sensor models. Each model employs an Auto-Associative Kernel Regression (AAKR) model architecture to predict correct sensor behavior. Performance of each of the developed models is evaluated using four metrics: accuracy, auto-sensitivity, cross-sensitivity, and newly developed Error Uncertainty Limit Monitoring (EULM) detectability. The uncertainty estimate for each model is also calculated through two methods: analytic formulas and Monte Carlo estimation. The uncertainty estimates are verified by calculating confidence interval coverages to assure that 95% of the measured data fall within the confidence intervals. The model performance evaluation identified the Pressurizer Level model as acceptable for on-line monitoring (OLM) implementation. The other two models, RPS Loop A and RCS Loop A SG Level, highlight two common problems that occur in model development and evaluation, namely faulty data and poor signal selection

Vibratory Hub Loads of Helicopters due to Uncertainty of Composite Blade Properties (복합재료 블레이드의 불확실성을 고려한 헬리콥터 허브 진동하중 해석)

  • You, Young-Hyun;Jung, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.634-641
    • /
    • 2009
  • In this work, the behavior of vibratory hub loads induced due to the uncertainties of composite material properties for each of the participating rotor blades is investigated. The random material properties of composites available from the existing experimental data are processed by using the Monte-Carlo simulation technique to obtain the stochastic distribution of sectional stiffnesses of composite blades. The coefficients of variation (standard deviation divided by the mean) obtained from the sectional stiffness constants are used as an input to the comprehensive aeroelastic analysis code that can evaluate the hub loads of a rotor system. It is found that the uncertainty effects of composite material properties inevitably bring a dissimilarity to the rotor system. The influence of hub vibration response with respect to the individual stiffness (flatwise bending, chordwise bending and torsion) changes is also identified.

Inverse optimal control of nonlinear systems with structural uncertainty (구조적 불확실성을 갖는 비선형 시스템의 역최적제어)

  • Lee, Sang-Hun;Kim, Jin-Soo;Lee, Jong-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2651-2659
    • /
    • 2009
  • In this paper, inverse optimal control for nonlinear systems with structural uncertainty is considered. The first, the bounded of structural uncertainty is introduced and based on the control Lyapunov function, a theorem for the globally asymptotic stability is presented. From this a less conservative condition for the inverse optimal control is derived. The result is used to design an inverse optimal controller for a class of nonlinear systems, that improves and extends the existing results. The class of nonlinear system considered is also enlarger. The simulation results show the effectiveness of the method.

Adaptive Anti-Sway Trajectory Tracking Control of Overhead Crane using Fuzzy Observer and Fuzzy Variable Structure Control (퍼지 관측기와 퍼지 가변구조제어를 이용한 천정주행 크레인의 적응형 흔들림 억제 궤적추종제어)

  • Park, Mun-Soo;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.452-461
    • /
    • 2007
  • Adaptive anti-sway and trajectory tracking control of overhead crane is presented, which utilizes Fuzzy Uncertainty Observer(FUO) and Fuzzy based Variable Structure Control(FVSC). We consider an overhead crane system which can be decoupled into the actuated and unactuated subsystems with its own lumped uncertainty such as parameter uncertainties and external disturbance. First, a new method for anti-sway control using FVSC is proposed to improve the conventional method based on Lyapunov direct method, while a conventional trajectory tracking control law using feedback linearization is directly adopted. Second, FUO is designed to estimate one of the two lumped uncertainties which can compensate both of them, based on the fact that two lumped uncertainties are coupled with each other. Then, an adaptive anti-sway control is proposed by incorporating the proposed FVSC and FUO. Under the condition that the observation error is Uniformly Ultimately Bounded(UUB) within an arbitrarily shrinkable region, the overall closed-loop system is shown to be Globally Uniformly Ultimately Bounded(GUUB). In addition, the Global Asymptotic Stability(GAS) of it is shown under the vanishing disturbance assumption. Finally, the effectiveness of the proposed scheme has been confirmed by numerical simulations.

Sensitivity Analysis of FDS Results for the Input Uncertainty of Fire Heat Release Rate (화재 열발생률 입력 불확실도에 대한 FDS 결과의 민감도 분석)

  • Cho, Jae-Ho;Hwang, Cheol-Hong;Kim, Joosung;Lee, Sangkyu
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.1
    • /
    • pp.25-32
    • /
    • 2016
  • A sensitivity analysis of FDS(Fire Dynamics Simulator) results for the input uncertainty of heat release rate (Q) which might be the most influencing parameter to fire behaviors was performed. The calculated results were compared with experimental data obtained by the OECD/NEA PRISME project. The sensitivity of FDS results with the change in Q was also compared with the empirical correlations suggested in previous literature. As a result, the change in the specified Q led to the different dependence of major quantities such as temperature and species concentrations for the over- and under-ventilated fire conditions, respectively. It was also found that the sensitivity of major quantities to uncertain value of Q showed the significant difference in results obtained using the previous empirical correlations.

The Analysis of Trajectory Tracking Error Caused by the Tolerance of the Design Parameters of a Parallel Kinematic Manipulator (병렬로봇의 설계 공차가 궤적 정밀도에 미치는 영향 분석)

  • Park, Chanhun;Park, DongIl;Kim, Doohyung
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.248-255
    • /
    • 2016
  • Machining error makes the uncertainty of dimensional accuracy of the kinematic structure of a parallel robot system, which makes the uncertainty of kinematic accuracy of the end-effector of the parallel robot system. In this paper, the tendency of trajectory tracking error caused by the tolerance of design parameters of the parallel robot is analyzed. For this purpose, all the position errors are analyzed as the manipulator is moved on the target trajectory. X, Y, Z components of the trajectory errors are analyzed respectively, as well as resultant errors, which give the designer of the manipulator the intuitive and deep understanding on the effects of each design parameter to the trajectory tracking errors caused by the uncertainty of dimensional accuracy. The research results shows which design parameters are critically sensitive to the trajectory tracking error and the tendency of the trajectory tracking error caused by them.