• Title/Summary/Keyword: system on a chip

Search Result 1,545, Processing Time 0.03 seconds

A Property-Based Data Sealing using the Weakest Precondition Concept (최소 전제조건 개념을 이용한 성질 기반 데이터 실링)

  • Park, Tae-Jin;Park, Jun-Cheol
    • Journal of Internet Computing and Services
    • /
    • v.9 no.6
    • /
    • pp.1-13
    • /
    • 2008
  • Trusted Computing is a hardware-based technology that aims to guarantee security for machines beyond their users' control by providing security on computing hardware and software. TPM(Trusted Platform Module), the trusted platform specified by the Trusted Computing Group, acts as the roots for the trusted data storage and the trusted reporting of platform configuration. Data sealing encrypts secret data with a key and the platform's configuration at the time of encryption. In contrast to the traditional data sealing based on binary hash values of the platform configuration, a new approach called property-based data sealing was recently suggested. In this paper, we propose and analyze a new property-based data sealing protocol using the weakest precondition concept by Dijkstra. The proposed protocol resolves the problem of system updates by allowing sealed data to be unsealed at any configuration providing the required property. It assumes practically implementable trusted third parties only and protects platform's privacy when communicating. We demonstrate the proposed protocol's operability with any TPM chip by implementing and running the protocol on a software TPM emulator by Strasser. The proposed scheme can be deployed in PDAs and smart phones over wireless mobile networks as well as desktop PCs.

  • PDF

Evaluation of 12nm Ti Layer for Low Temperature Cu-Cu Bonding (저온 Cu-Cu본딩을 위한 12nm 티타늄 박막 특성 분석)

  • Park, Seungmin;Kim, Yoonho;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.3
    • /
    • pp.9-15
    • /
    • 2021
  • Miniaturization of semiconductor devices has recently faced a physical limitation. To overcome this, 3D packaging in which semiconductor devices are vertically stacked has been actively developed. 3D packaging requires three unit processes of TSV, wafer grinding, and bonding, and among these, copper bonding is becoming very important for high performance and fine-pitch in 3D packaging. In this study, the effects of Ti nanolayer on the antioxidation of copper surface and low-temperature Cu bonding was investigated. The diffusion rate of Ti into Cu is faster than Cu into Ti in the temperature ranging from room temperature to 200℃, which shows that the titanium nanolayer can be effective for low-temperature copper bonding. The 12nm-thick titanium layer was uniformly deposited on the copper surface, and the surface roughness (Rq) was lowered from 4.1 nm to 3.2 nm. Cu bonding using Ti nanolayer was carried out at 200℃ for 1 hour, and then annealing at the same temperature and time. The average shear strength measured after bonding was 13.2 MPa.

A Fully Digital Automatic Gain Control System with Wide Dynamic Range Power Detectors for DVB-S2 Application (넓은 동적 영역의 파워 검출기를 이용한 DVB-S2용 디지털 자동 이득 제어 시스템)

  • Pu, Young-Gun;Park, Joon-Sung;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.9
    • /
    • pp.58-67
    • /
    • 2009
  • This paper presents a fully digital gain control system with a new high bandwidth and wide dynamic range power detector for DVB-S2 application. Because the peak-to-average power ratio (PAPR) of DVB-S2 system is so high and the settling time requirement is so stringent, the conventional closed-loop analog gain control scheme cannot be used. The digital gain control is necessary for the robust gain control and the direct digital interface with the baseband modem. Also, it has several advantages over the analog gain control in terms of the settling time and insensitivity to the process, voltage and temperature variation. In order to have a wide gain range with fine step resolution, a new AGC system is proposed. The system is composed of high-bandwidth digital VGAs, wide dynamic range power detectors with RMS detector, low power SAR type ADC, and a digital gain controller. To reduce the power consumption and chip area, only one SAR type ADC is used, and its input is time-interleaved based on four power detectors. Simulation and measurement results show that the new AGC system converges with gain error less than 0.25 dB to the desired level within $10{\mu}s$. It is implemented in a $0.18{\mu}m$ CMOS process. The measurement results of the proposed IF AGC system exhibit 80-dB gain range with 0.25-dB resolution, 8 nV/$\sqrt{Hz}$ input referred noise, and 5-dBm $IIP_3$ at 60-mW power consumption. The power detector shows the 35dB dynamic range for 100 MHz input.

An Efficient Test Data Compression/Decompression for Low Power Testing (저전력 테스트를 고려한 효율적인 테스트 데이터 압축 방법)

  • Chun Sunghoon;Im Jung-Bin;Kim Gun-Bae;An Jin-Ho;Kang Sungho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.2 s.332
    • /
    • pp.73-82
    • /
    • 2005
  • Test data volume and power consumption for scan vectors are two major problems in system-on-a-chip testing. Therefore, this paper proposes a new test data compression/decompression method for low power testing. The method is based on analyzing the factors that influence test parameters: compression ratio, power reduction and hardware overhead. To improve the compression ratio and the power reduction ratio, the proposed method is based on Modified Statistical Coding (MSC), Input Reduction (IR) scheme and the algorithms of reordering scan flip-flops and reordering test pattern sequence in a preprocessing step. Unlike previous approaches using the CSR architecture, the proposed method is to compress original test data, not $T_{diff}$, and decompress the compressed test data without the CSR architecture. Therefore, the proposed method leads to better compression ratio with lower hardware overhead and lower power consumption than previous works. An experimental comparison on ISCAS '89 benchmark circuits validates the proposed method.

Compact Field Remapping for Dynamically Allocated Structures (동적으로 할당된 구조체를 위한 압축된 필드 재배치)

  • Kim, Jeong-Eun;Han, Hwan-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.10
    • /
    • pp.1003-1012
    • /
    • 2005
  • The most significant difference of embedded systems from general purpose systems is that embedded systems are allowed to use only limited resources including battery and memory. Especially, the number of applications increases which deal with multimedia data. In those systems with high data computations, the delay of memory access is one of the major bottlenecks hurting the system performance. As a result, many researchers have investigated various techniques to reduce the memory access cost. Most programs generally have locality in memory references. Temporal locality of references means that a resource accessed at one point will be used again in the near future. Spatial locality of references is that likelihood of using a resource gets higher if resources near it were just accessed. The latest embedded processors usually adapt cache memory to exploit these two types of localities. Processors access faster cache memory than off-chip memory, reducing the latency. In this paper we will propose the enhanced dynamic allocation technique for structure-type data in order to eliminate unused memory space and to reduce both the cache miss rate and the application execution time. The proposed approach aggregates fields from multiple records dynamically allocated and consecutively remaps them on the memory space. Experiments on Olden benchmarks show $13.9\%$ L1 cache miss rate drop and $15.9\%$ L2 cache miss drop on average, compared to the previously proposed techniques. We also find execution time reduced by $10.9\%$ on average, compared to the previous work.

Fracture Strength of All-Ceramic 3-Unit Fixed Partial Dentures Manufactured by CAD/CAM and Copy-Milling Systems (CAD/CAM 및 카피밀링 시스템을 이용하여 제작한 구치부 3-유닛 고정성 국소의치의 파절강도)

  • Kang, Hoo-Won;Kim, Hee-Jin;Kim, Jang-Ju;Ko, Myung-Won
    • Journal of Technologic Dentistry
    • /
    • v.34 no.2
    • /
    • pp.95-103
    • /
    • 2012
  • Purpose: Fracture strength of all-ceramic 3-unit fixed partial dentures manufactured by CAD/CAM and copy-milling systems were evaluated. Methods: Zirconia cores were made by milling the pre-sintered zirconia block by CAD/CAM or copy milling method followed by subsequent sintering. By building-up the corresponding porcelains on the core, all-ceramic bridges were fabricated, and those were evaluated in comparison with PFM fixed partial denture. Results: During the flexural test of the 3-unit PFM bridge, the porcelain started to chip or break at 507.28(${\pm}62.82$)kgf and the metal framework did not break until the maximum load level of 800kgf which was set in the testing instrument of this study. However, among all-ceramic restoration test groups, Everest(EV) group showed a peeling off or breakage of the porcelain from 365.64(${\pm}64.96$)kgf and the core was broken at 491.77(${\pm}55.62$)kgf. Those values of Zirkonzahn(ZR) were 431.03(${\pm}58.47$)kgf and 602.74(${\pm}48.44$)kgf, respectively. The break strength of the porcelain of PFM(PM) group was significantly higher than that of EV (p<0.05) group and there was no significant difference when comparing to that of ZR (p>0.05). ZR group showed higher break strength than that of EV group however there was no significant difference (p>0.05). The break strength of cores were in the increasing order of EV < ZR < PM (p<0.05). Conclusion: We could find that even though the PM group fractured at much higher value than all-ceramic cores, the breakage values of the porcelain of PM group with crack formation or delamination, which will be regarded as clinical failure, was significantly higher than that of EV group and not significantly higher than that of ZR group at p-values of 0.05. The break strength of ZR group was higher than that of EV group at an insignificant level(p>0.05).

Automatic Interface Synthesis based on IP Categorization and Characteristics Matching (IP 범주화와 특성 대응을 통한 인터페이스 회로 자동 합성)

  • Yun, Chang-Ryul;Jhang, Kyoung-Son
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.10 s.352
    • /
    • pp.34-44
    • /
    • 2006
  • A system-on-a-chip (SoC) design uses pre-verified IP hardware blocks in order to reduce design time. We need interface circuits to connect IPs with different protocols. In SoC design we should design interface circuits frequently and these tasks are somewhat time-consuming and error-prone. So it is necessary to generate the interface circuits automatically. Several studies have been made on generating interface circuits only from the communication protocols of IPs. With existing approaches, it is not easy to generate interface circuits connecting two IPs only from communication protocols: connection between IP with address and W without address, connection between IP with only one port to transfer address/data and IP with different ports for address and data connection between IP that transfer address and data together and IP that transfer only one address with a number of data in a burst. No consideration of various characteristics of IPs and no changed algorithm are responsible for it. In order to solve this problem, the proposed approach categorizes communication protocols of IPs, and takes characteristics matching of IPs into account during the interface synthesis. In experiments, we show that we could correctly generate and verify interface circuits for IPs with different characteristics.

A Study on Extendable Instruction Set Computer 32 bit Microprocessor (확장 명령어 32비트 마이크로 프로세서에 관한 연구)

  • 조건영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.5
    • /
    • pp.11-20
    • /
    • 1999
  • The data transfer width between the mocroprocessor and the memory comes to a critical part that limits system performance since the data transfer width has been as it was while the performance of a microprocessor is getting higher due to its continuous development in speed. And it is important that the memory should be in small size for the reduction of embedded microprocessor's price which is integrated on a single chip with the memory and IO circuit. In this paper, a mocroprocessor tentatively named as Extendable Instruction Set Computer(EISC) is proposed as the high code density 32 bit mocroprocessor architecture. The 32 bit EISC has 16 general purpose registers and 16 bit fixed length instruction which has the short length offset and small immediate operand. By using and extend register and extend flag, the offset and immediate operand could be extended. The proposed 32 bit EISC is implemented with an FPGA and all of its functions have been tested and verified at 1.8432MHz. And the cross assembler, the cross C/C++ compiler and the instruction simulator of the 32 bit EISC shows 140-220% and 120-140% higher code density than RISC and CISC respectively, which is much higher than any other traditional architectures. As a consequence, the EISC is suitable for the next generation computer architecture since it requires less data transfer width compared to any other ones. And its lower memory requirement will embedded microprocessor more useful.

  • PDF

Comparative Analysis of ViSCa Platform-based Mobile Payment Service with other Cases (스마트카드 가상화(ViSCa) 플랫폼 기반 모바일 결제 서비스 제안 및 타 사례와의 비교분석)

  • Lee, June-Yeop;Lee, Kyoung-Jun
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.163-178
    • /
    • 2014
  • Following research proposes "Virtualization of Smart Cards (ViSCa)" which is a security system that aims to provide a multi-device platform for the deployment of services that require a strong security protocol, both for the access & authentication and execution of its applications and focuses on analyzing Virtualization of Smart Cards (ViSCa) platform-based mobile payment service by comparing with other similar cases. At the present day, the appearance of new ICT, the diffusion of new user devices (such as smartphones, tablet PC, and so on) and the growth of internet penetration rate are creating many world-shaking services yet in the most of these applications' private information has to be shared, which means that security breaches and illegal access to that information are real threats that have to be solved. Also mobile payment service is, one of the innovative services, has same issues which are real threats for users because mobile payment service sometimes requires user identification, an authentication procedure and confidential data sharing. Thus, an extra layer of security is needed in their communication and execution protocols. The Virtualization of Smart Cards (ViSCa), concept is a holistic approach and centralized management for a security system that pursues to provide a ubiquitous multi-device platform for the arrangement of mobile payment services that demand a powerful security protocol, both for the access & authentication and execution of its applications. In this sense, Virtualization of Smart Cards (ViSCa) offers full interoperability and full access from any user device without any loss of security. The concept prevents possible attacks by third parties, guaranteeing the confidentiality of personal data, bank accounts or private financial information. The Virtualization of Smart Cards (ViSCa) concept is split in two different phases: the execution of the user authentication protocol on the user device and the cloud architecture that executes the secure application. Thus, the secure service access is guaranteed at anytime, anywhere and through any device supporting previously required security mechanisms. The security level is improved by using virtualization technology in the cloud. This virtualization technology is used terminal virtualization to virtualize smart card hardware and thrive to manage virtualized smart cards as a whole, through mobile cloud technology in Virtualization of Smart Cards (ViSCa) platform-based mobile payment service. This entire process is referred to as Smart Card as a Service (SCaaS). Virtualization of Smart Cards (ViSCa) platform-based mobile payment service virtualizes smart card, which is used as payment mean, and loads it in to the mobile cloud. Authentication takes place through application and helps log on to mobile cloud and chooses one of virtualized smart card as a payment method. To decide the scope of the research, which is comparing Virtualization of Smart Cards (ViSCa) platform-based mobile payment service with other similar cases, we categorized the prior researches' mobile payment service groups into distinct feature and service type. Both groups store credit card's data in the mobile device and settle the payment process at the offline market. By the location where the electronic financial transaction information (data) is stored, the groups can be categorized into two main service types. First is "App Method" which loads the data in the server connected to the application. Second "Mobile Card Method" stores its data in the Integrated Circuit (IC) chip, which holds financial transaction data, which is inbuilt in the mobile device secure element (SE). Through prior researches on accept factors of mobile payment service and its market environment, we came up with six key factors of comparative analysis which are economic, generality, security, convenience(ease of use), applicability and efficiency. Within the chosen group, we compared and analyzed the selected cases and Virtualization of Smart Cards (ViSCa) platform-based mobile payment service.

Design of the Power-LED Driver for High Speed Dimming Control (고속 디밍제어를 위한 고출력-LED 드라이버 설계)

  • Lee, Keon;Kang, Woo-Seong;Jung, Tae-Jin;Yoon, Kwang-Sub
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.128-135
    • /
    • 2013
  • This paper presents a high dimming ratio Power-LED driver IC with high power which is capable of controlling LEDs. In order to accomplish a high dimming ratio LED driver, the preloading inductor current methodology is proposed for the power stage of the proposed method to achieve the fast transient response time during the Power-LED load switching. The information containing the current flowing on the LEDs can be utilized to predict the amount of the current on the inductor. The minimum LED current rising time of existing high dimming ratio Power-LED driver is limited by $3{\mu}s$, however that of the proposed high dimming ratio Power-LED driver is reduced about 1/10. The LED driver is implemented with 0.35um 60V BCDMOS 2-poly 4-metal process. The measurement results show that the proposed LED driver system features the minimum rising time as small as 240ns at the dimming frequency of 1KHz with a 12V of input voltage, nine white LEDs and 353mA of LED current. The LED rising time and power conversion efficiency of the chip are measured to be 240ns and 93.72%, respectively.