• 제목/요약/키워드: system modal damping

검색결과 227건 처리시간 0.022초

Flexural Vibration Analysis of a Sandwich Beam Specimen with a Partially Inserted Viscoelastic Layer

  • Park, Jin-Tack;Park, Nak-Sam
    • Journal of Mechanical Science and Technology
    • /
    • 제18권3호
    • /
    • pp.347-356
    • /
    • 2004
  • The flexural vibration characteristics of a sandwich beam system with a partially inserted viscoelastic layer were quantitatively studied using the finite element analysis in combination with the sine-sweep experiment. Asymmetric mode shapes of the flexural vibration were visualized by holographic interferometry, which agreed with those obtained by the finite element simulation. Effects of the length and the thickness of the partial viscoelastic layer on the system loss factor (η$\_$s/) and resonant frequency (f$\_$r/) were significantly large for both the symmetric and asymmetric modes of the beam system.

디젤엔진축계 진동저감을 위한 스프링-점성 댐퍼의 매개변수 결정 연구 (Study on the Parameter Decision of Spring-viscous Dampers for Torsional Vibration Reduction of Diesel Engine Shafting System)

  • 이동환;정태영;김영철;신윤호
    • 한국소음진동공학회논문집
    • /
    • 제20권12호
    • /
    • pp.1168-1175
    • /
    • 2010
  • Excessive torsional vibrations from marine engine shafting systems can be reduced by using torsional vibration dampers. But in order to be tuned effectively, the dampers should be designed through the optimum design procedure. In this paper, the procedure to get the optimum values of system parameters of spring-viscous dampers using effective modal mass of inertia and stiffness is suggested and the damping is determined by the exact algebra optimization method. The validity of the suggested method is confirmed through the application to a 1800 kW four cycle diesel engine and generator system.

능동 진동제어를 위한 시스템 동정 (System Identification for Active Vibration control)

  • 송철기;황진권;최종호;이장무
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.397-401
    • /
    • 1994
  • This paper proposes an identification method for a thin plate where multiple actuators and sensors are bonded. Since a thin plate has small damping ratios of all modes, each mode can be identified seperately with a bandpass filter for each modal signal. With the bandpass filter and the characteristics of the plate, the Multi-Input Multi-Output (MIMO) model of the plate can be converted to several Multi-Input Single-Output(MISO) models of second order linear difference equations of the modes. Parameters for each mode are obtained by using the Least Square method. Form there MISO models, the MIMO model is obtained in the form of the state space. Experiments were performed for an all-clamped plate with two pairs of piezoelectric actuators and sensors. The outputs of the identified model and the experimental data match well.

  • PDF

Design formulas for vibration control of sagged cables using passive MR dampers

  • Duan, Yuanfeng;Ni, Yi-Qing;Zhang, Hongmei;Spencer, Billie F. Jr.;Ko, Jan-Ming;Dong, Shenghao
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.537-551
    • /
    • 2019
  • In this paper, a method for analyzing the damping performance of stay cables incorporating magnetorheological (MR) dampers in the passive control mode is developed taking into account the cable sag and inclination, the damper coefficient, stiffness and mass, and the stiffness of damper support. Both numerical and asymptotic solutions are obtained from complex modal analysis. With the asymptotic solution, analytical formulas that evaluate the equivalent damping ratio of the sagged cable-damper system in consideration of all the above parameters are derived. The main thrust of the present study is to develop an general design formula and a universal curve for the optimal design of MR dampers for adjustable passive control of sagged cables. Two sag-affecting coefficients are derived to reflect the effects of cable sag on the maximum attainable damping ratio and the optimal damper coefficient. For the cable configurations commonly used in cable-stayed bridges, the sag-affecting coefficients are directly expressed in terms of the sag-extensibility parameter to facilitate the control design. A case study on adjustable passive vibration control of the longest cable (536 m) on Stonecutters Bridge is carried out to demonstrate the influence of the sag for the damper design, and to figure out the necessity of adjustability of damper coefficients for achieving maximum damping ratio for different vibration modes.

Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core

  • Eyvazian, Arameh;Hamouda, Abdel Magid;Tarlochan, Faris;Mohsenizadeh, Saeid;Dastjerdi, Ali Ahmadi
    • Steel and Composite Structures
    • /
    • 제33권6호
    • /
    • pp.891-906
    • /
    • 2019
  • This study considers the instability behavior of sandwich plates considering magnetorheological (MR) fluid core and piezoelectric reinforced facesheets. As facesheets at the top and bottom of structure have piezoelectric properties they are subjected to 3D electric field therefore they can be used as actuator and sensor, respectively and in order to control the vibration responses and loss factor of the structure a proportional-derivative (PD) controller is applied. Furthermore, Halpin-Tsai model is used to determine the material properties of facesheets which are reinforced by graphene platelets (GPLs). Moreover, because the core has magnetic property, it is exposed to magnetic field. In addition, Kelvin-Voigt theory is applied to calculate the structural damping of the piezoelectric layers. In order to consider environmental forces applied to structure, the visco-Pasternak model is assumed. In order to consider the mechanical behavior of structure, sinusoidal shear deformation theory (SSDT) is assumed and Hamilton's principle according to piezoelasticity theory is employed to calculate motion equations and these equations are solved based on differential cubature method (DCM) to obtain the vibration and modal loss factor of the structure subsequently. The effect of different factors such as GPLs distribution, dimensions of structure, electro-magnetic field, damping of structure, viscoelastic environment and boundary conditions of the structure on the vibration and loss factor of the system are considered. In order to indicate the accuracy of the obtained results, the results are validated with other published work. It is concluded from results that exposing magnetic field to the MR fluid core has positive effect on the behavior of the system.

M&S를 이용한 항공기용 통합형 전기식 구동장치의 동적 안전성 연구 (The study of dynamic safety using M&S for Integrated Electro-Mechanical Actuator installed on aircraft)

  • 이석규;이병호;이증;강동석;최관호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.36-41
    • /
    • 2014
  • Electro-Mechanical Actuator installed on aircraft consists of a decelerator which magnifies the torque to rotate an axis connected with aircraft control surface, a control section which controls the motor assembly through receiving orders from cockpit and a motor assembly which rotates the decelerator. EMA controls aircraft attitued, position, landing, takeoff, etc. It is important part of a aircraft. Aircraft maneuvering make vibration of EMA. Vibration may cause the vibration fatigue. For that reason, it is necessary to analyze the system safety. In this paper, first EMA is modeled in finite element method and analyzed the response from input vibration. second EMA is tested and analyzed from modal experimental data. third EMA Fe model is updated and re analyzed. and EMA is verified safety with $3{\sigma}$ stress and S/N curves.

  • PDF

Adaptive Wavelet Analysis of Non-Stationary Vibration Signal in Rotor Dynamics

  • Ji Guoyi;Park Dong-Keun;Chung Won-Jee;Lee Choon-Man
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권4호
    • /
    • pp.26-30
    • /
    • 2005
  • A rotor run-up or run-down process provide more useful information for modal analysis than normal operation conditions. A traditional difficulty associated with rotor run-up or run-down analysis is the non-stationary nature of vibration data. This paper compares Short-Time Fourier Transform (STFT) and the wavelets analysis in these non-stationary signal analyses. An Adaptive Wavelet Analysis (AWT) is proposed to analyze these signals. Although simulations and experiments in a simple rotor-bearing system show that both STFT and AWT can be used to analyze non-stationary vibration signals in rotor dynamics, proposed AWT provides better results than STFT analysis. From the amplitude-frequency curve obtained by AWT, the modal frequency and damping ratio are calculated. This paper also analyzes the characteristics of signals when the shaft touches the outer hoop in a run-up process. The AWT can give a good result in this complex dynamic analysis of the touching process.

Energy-based design base shear for RC frames considering global failure mechanism and reduced hysteretic behavior

  • Merter, Onur;Ucar, Taner
    • Structural Engineering and Mechanics
    • /
    • 제63권1호
    • /
    • pp.23-35
    • /
    • 2017
  • A nonlinear static procedure considering work-energy principle and global failure mechanism to estimate base shears of reinforced concrete (RC) frame-type structures is presented. The relative energy equation comprising of elastic vibrational energy, plastic strain energy and seismic input energy is obtained. The input energy is modified with a factor depending on damping ratio and ductility, and the energy that contributes to damage is obtained. The plastic energy is decreased with a factor to consider the reduced hysteretic behavior of RC members. Given the pre-selected failure mechanism, the modified energy balance equality is written using various approximations for modification factors of input energy and plastic energy in scientific literature. External work done by the design lateral forces distributed to story levels in accordance with Turkish Seismic Design Code is calculated considering the target plastic drift. Equating the plastic energy obtained from energy balance to external work done by the equivalent inertia forces considering, a total of 16 energy-based base shears for each frame are derived considering different combinations of modification factors. Ductility related parameters of modification factors are determined from pushover analysis. Relative input energy of multi degree of freedom (MDOF) system is approximated by using the modal-energy-decomposition approach. Energy-based design base shears are compared with those obtained from nonlinear time history (NLTH) analysis using recorded accelerograms. It is found that some of the energy-based base shears are in reasonable agreement with the mean base shear obtained from NLTH analysis.

Experimental study on vibration serviceability of steel-concrete composite floor

  • Cao, Liang;Liu, Jiepeng;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • 제74권5호
    • /
    • pp.711-722
    • /
    • 2020
  • In this study, on-site testing was carried out to investigate the vibration serviceability of a composite steel-bar truss slab with steel girder system. Impulse excitations (heel-drop and jumping) and steady-state motion (walking and running) were performed to capture the primary vibration parameters (natural frequency and damping ratio) and distribution of peak acceleration. The composite floor possesses low frequency (<8.3Hz) and damping ratio (<2.47%). Based on experimental, theoretical, and numerical analyses on fundamental natural frequency, the boundary condition of SCSS (i.e., three edges simply supported and one edge clamped) is deemed more comparable substitutive for the investigated composite floor. Walking and running excitations by one person (single excitation) were considered to evaluate the vibration serviceability of the composite floor. The measured acceleration results show a satisfactory vibration perceptibility. For design convenience and safety, a crest factor βrp describing the ratio of peak acceleration to root-mean-square acceleration induced from the walking and running excitations is proposed. The comparisons of the modal parameters determined by walking and running tests reveal the interaction effect between the human excitation and the composite floor.

Filtered Velocity Feedback 제어기를 이용한 양단지지보의 능동진동제어 (Active Vibration Control of Clamped Beams Using Filtered Velocity Feedback Controllers)

  • 신창주;홍진숙;정의봉
    • 한국소음진동공학회논문집
    • /
    • 제21권5호
    • /
    • pp.447-454
    • /
    • 2011
  • This paper reports a filtered velocity feedback(FVF) controller, which is an alternative to direct velocity feedback(DVFB) controller. The instability problems due to high frequency response under DVFB can be alleviated by the suggested FVF controller. The FVF controller is designed to filter out the unstable high frequency response. The FVF controller and the dynamics of clamped beams under forces and moments are first formulated. The effects of the design parameters(cut-off frequency, gain, and damping ratio) on the stability and the performance are then investigated. The cut-off frequency should be selected not to affect the system stability. The magnitude of the open loop transfer function(OLTF) at the cut-off frequency should be small. As increasing the gain of the FVF controller, the magnitude of the OLTF is increased, so that the closed loop response can be reduced more. The enhancement of the OLTF at the cut-off frequency is reduced but the phase behavior around the cut-off frequency is distorted, as the damping ratio is increased. The control performance is finally estimated for the clamped beam. More than 10 dB reductions in velocity response can be achieved at the modal frequencies from the first to eighth modes.