• Title/Summary/Keyword: system lifetime

Search Result 833, Processing Time 0.029 seconds

Reliability-Centered Maintenance Model for Maintenance of Electric Power Distribution System Equipment (배전계통 기기 유지보수를 위한 RCM 모델)

  • Moon, Jong-Fil;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.410-415
    • /
    • 2009
  • With the implementation of electric power industry reform, the utilities are looking for effective ways to improve the economic efficiency. One area in particular, the equipment maintenance, is being scrutinized for reducing costs while keeping a reasonable level of the reliability in the overall system. Here the conventional RCM requires the tradeoff between the upfront maintenance costs and the potential costs of losing loads. In this paper we describe the issues related to applying so-called the "Reliability-centered Maintenance" (RCM) method in managing electric power distribution equipment. The RCM method is especially useful as it explicitly incorporates the cost-tradeoff of interest, i.e. the upfront maintenance costs and the potential interruption costs, in determining which equipment to be maintained and how often. In comparison, the "Time-based Maintenance" (TBM) method, the traditional method widely used, only takes the lifetime of equipment into consideration. In this paper, the modified Markov model for maintenance is developed. First, the existing Markov model for maintenance is explained and analyzed about transformer and circuit breaker, so on. Second, developed model is introduced and described. This model has two different points compared with existing model: TVFR and nonlinear customer interruption cost (CIC). That is, normal stage at the middle of bathtub curve has not CFR but the gradual increasing failure rate and the unit cost of CIC is increasing as the interruption time is increasing. The results of case studies represent the optimal maintenance interval to maintain the equipment with minimum costs. A numerical example is presented for illustration purposes.

Development of CANDU Reactor Aging Monitor (CANDU형 원전 경년열화 감시시스템(Aging Monitor) 개발)

  • Kim, Hong Key;Choi, Young Hwan;Ko, Han Ok
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.5 no.2
    • /
    • pp.13-19
    • /
    • 2009
  • As the operating time in nuclear power plants (NPPs) increases, the integrity of nuclear components may be continually degraded due to aging effects of systems, structures and components. Recently, a number of NPPs are being operated beyond their design life to produce more electricity without shutting down. The critical issue in extending a lifetime is to maintain the level of safety during the extended operation period while satisfying the international regulatory standards. Therefore, it is beneficial to build a monitoring system to measure an aging status. In this paper, the Aging Monitor (AM) based on lots of aging database obtained from the operating plants and research results on the aging effects was developed to monitor, manage and evaluate the aging phenomena systematically and effectively in NPPs. The AM for the CANDU is divided into 6 modules: (1) Aging Alarm/Coloring Monitor, (2) Aging Database, (3) Aging Document, (4) Real-time Integrity Monitor, (5) Surveillance and Inspection Management System, and (6) Continued Operation and Periodic Safety Review (PSR) Safety Evaluation. The proposed system is expected to provide the integrity assessment for the major mechanical components of an NPP under concurrent working environments.

  • PDF

A Study on the Reliability Improvement of Guided Missile (유도탄의 신뢰성 향상 방안 고찰)

  • Kim, Bohyeon;Hwang, Kyeonghwan;Hur, Jangwook
    • Journal of Applied Reliability
    • /
    • v.16 no.3
    • /
    • pp.208-215
    • /
    • 2016
  • Purpose: ASRP for the domestic development guided missiles requires not only for the reliability evaluation of the products in storage but also for the life cycle management of the products including development prototypes and initial production items. Methods: For this purpose, it should be performed to build a performance database before and after the accelerated aging test with shelf life items including development prototypes and initial production items, based on which the lifetime prediction should also be carried out. In addition, HILS must be applied for the acceptance test with the initial and follow-up production items, and also for ASRP for the long-term storage products in order to secure systematic quality assurance. Results: The results for the life cycle reliability Improving of domestic development of guided missiles are DB building of prescription Item performance, active application of HILS, Management associated with guided missiles life cycle and to Secure technology data about the introduction of foreign guided missiles. Conclusion: Furthermore, it is demanded that DTaQ, the managing agency of ASRP, actively take part in the process to maintain reliability engagement consistency over the life cycle of guided missiles.

Characteristics of Precise Temperature Control of Industrial Cooler on Thermal Load (산업용 냉각기의 열부하 변화에 대응한 정밀온도제어 특성)

  • Baek, S.M.;Choi, J.H.;Byun, J.Y.;Moon, C.G.;Jeong, S.K.;Yoon, J.I.
    • Journal of Power System Engineering
    • /
    • v.14 no.2
    • /
    • pp.34-39
    • /
    • 2010
  • Recently, technical trend for machine tools is focused on enhancement of speed and accuracy. High speedy processing causes thermal and structural deformation of objects from the machine tools. Water cooler has to be applied to machine tools to reduce the thermal negative influence with accurate temperature controlling system. Existing On-Off control type can't control temperature accurately because compressor is operated and stopped repeatedly and causes increment of power consumption and decrement of the expected life of compressor. The goal of this study is to minimize temperature error in steady state. In addition, control period of an electronic expansion valve were considered to increment of lifetime of the machine tools and quality of product with a water cooler. PI controller is designed using type of hot-gas bypass for precise control of temperature. Gain of PI is decided easily by method of critical oscillation response, excellent performance of control is shown with 4.24% overshoot and ${\pm}0.2^{\circ}C$error of steady state. Also, error range of temperature is controlled within $0.2^{\circ}C$although disturbance occurs.

Design and Verification using Energy Consumption Model of Low Power Sensor Network for Monitoring System for Elderly Living Alone (독거노인 모니터링 시스템을 위한 저전력 센서 네트워크 설계 및 에너지 소모 모델을 이용 검증)

  • Kim, Yong-Joong;Jung, Kyung-Kwon
    • Journal of IKEEE
    • /
    • v.13 no.3
    • /
    • pp.39-46
    • /
    • 2009
  • Wireless sensor networks consist of small, autonomous devices with wireless networking capabilities. In order to further increase the applicability in real world applications, minimizing energy consumption is one of the most critical issues. Therefore, accurate energy model is required for the evaluation of wireless sensor networks. In this paper we analyze the power consumption for wireless sensor networks. To develop the power consumption model, we have measured the power characteristics of commercial Kmote node based on TelosB platforms running TinyOS. Based on our model, the estimated lifetime of a battery powered sensor node can use about 6.9 months for application of human detection using PIR sensors. This result indicates that sensor nodes can be used in a monitoring system for elderly living alone.

  • PDF

The Efficient Maintenance System of Lead-acid Battery Based on the Analysis of Charging/Discharging Current (충.방전 전류해석을 통한 납축전지의 효율적인 관리시스템)

  • 박영산;황종구
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.1
    • /
    • pp.158-169
    • /
    • 2004
  • The efficient maintenance system of lead-acid battery was builted based cm analysis of charging and discharging current. This system was designed for the purpose of protecting the overdischarge of battery. So, We could protect the shortening lifetime of battery. It is checked the charging and discharging current of battery to decide the cut-off point by $\mu$-processor 80c196. Two current sensors were used to sense the current and the $\mu$-processer calculated amount of charging and discharging current of battery. And then display the state of charge.

A Study on PV AC-Module with Active Power Decoupling and Energy Storage System

  • Won, Dong-Jo;Noh, Yong-Su;Lim, Hong-Woo;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1894-1903
    • /
    • 2016
  • In general, electrolytic capacitors are used to reduce power pulsations on PV-panels. However, this can reduce the reliability of the PV AC-module system, because electrolytic capacitors have a shorter lifetime than PV-panels. In addition, PV-panels generate irregular power and inject it into the grid because the output power of a PV-panel depends on the surrounding conditions such as irradiation and temperature. To solve these problems, a grid-connected photovoltaic (PV) AC-module with active power decoupling and energy storage is proposed. A parallel bi-directional converter is connected to the AC module to reduce the output power pulsations of PV-panels. Thus, the electrolytic capacitor can be replaced with a film capacitor. In addition, the irregular output power due to the surrounding conditions can be regulated by using a parallel energy storage circuit. To maintain the discontinuous conduction mode at low irradiation, the frequency control method is adopted. The design method of the proposed converter and the operation principles are introduced. An experimental prototype rated at 125W was built to verify the performance of the proposed converter.

Life-cycle-cost optimization for the wind load design of tall buildings equipped with TMDs

  • Venanzi, Ilaria;Ierimonti, Laura;Caracoglia, Luca
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.379-392
    • /
    • 2020
  • The paper presents a Life-Cycle Cost-based optimization framework for wind-excited tall buildings equipped with Tuned Mass Dampers (TMDs). The objective is to minimize the Life-Cycle Cost that comprises initial costs of the structure, the control system and costs related to repair, maintenance and downtime over the building's lifetime. The integrated optimization of structural sections and mass ratio of the TMDs is carried out, leading to a set of Pareto optimal solutions. The main advantage of the proposed methodology is that, differently from the traditional optimal design approach, it allows to perform the unified design of both the structure and the control system in a Life Cycle Cost Analysis framework. The procedure quantifies wind-induced losses, related to structural and nonstructural damage, considering the stochastic nature of the loads (wind velocity and direction), the specificity of the structural modeling (e.g., non-shear-type vibration modes and torsional effects) and the presence of the TMDs. Both serviceability and ultimate limit states related to the structure and the TMDs' damage are adopted for the computation of repair costs. The application to a case study tall building allows to demonstrate the efficiency of the procedure for the integrated design of the structure and the control system.

Effect of Kinetic Parameters on Simultaneous Ramp Reactivity Insertion Plus Beam Tube Flooding Accident in a Typical Low Enriched U3Si2-Al Fuel-Based Material Testing Reactor-Type Research Reactor

  • Nasir, Rubina;Mirza, Sikander M.;Mirza, Nasir M.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.700-709
    • /
    • 2017
  • This work looks at the effect of changes in kinetic parameters on simultaneous reactivity insertions and beam tube flooding in a typical material testing reactor-type research reactor with low enriched high density ($U_3Si_2-Al$) fuel. Using a modified PARET code, various ramp reactivity insertions (from $0.1/0.5 s to $1.3/0.5 s) plus beam tube flooding ($0.5/0.25 s) accidents under uncontrolled conditions were analyzed to find their effects on peak power, net reactivity, and temperature. Then, the effects of changes in kinetic parameters including the Doppler coefficient, prompt neutron lifetime, and delayed neutron fractions on simultaneous reactivity insertion and beam tube flooding accidents were analyzed. Results show that the power peak values are significantly sensitive to the Doppler coefficient of the system in coupled accidents. The material testing reactor-type system under such a coupled accident is not very sensitive to changes in the prompt neutron life time; the core under such a coupled transient is not very sensitive to changes in the effective delayed neutron fraction.

Evaluation of life Expectancy of Power System Equipment Using Probability Distribution (확률분포를 이용한 전력설비의 기대여명 추정)

  • Kim, Gwang-Won;Hyun, Seung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.10
    • /
    • pp.49-55
    • /
    • 2008
  • This paper presents a novel evaluation method of life expectancy of power system equipment. The life expectancy means expected remaining lifetime; it can be usefully utilized to maintenance planning, equipment replacement planning, and reliability assessment. The proposed method is composed of three steps. Firstly, a cumulative probability for future years is evaluated for targeted age year. Secondly, the cumulative probability is modeled by well-blown cumulative distribution function(CDF) such as Weibull distribution. Lastly, life expectancy is evaluated as the mean value of the model. Since the model CDF is established in the proposed method, it can also evaluate the probability of equipment retirement within specific years. The developed method is applied to examples of generators of combined cycle power plants to show its effectiveness.