• Title/Summary/Keyword: system lifetime

Search Result 831, Processing Time 0.023 seconds

The characteristics research of lifetime degradation for LED Lighting System (LED가로등 열화특성 분석연구)

  • Lee, Se-Hyun;Yang, Seung-Yong;Hwang, Myung-Keun;Shin, Sang-Wuk;Rho, Jae-Yup;Choi, Seok-Joon;Lee, Jeong-Keun;Seo, Jeong-Jin
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.149-152
    • /
    • 2009
  • In this paper, We has been studied the lifetime degradation of LED lighting system compared to MH lighting. Especially the effect of temperature level on the lifetime degradation has been investigated. The results show that temperature plays a role in the lifetime degradation and slope of degradation line represent as temperature level differently. However, It is possible to estimate the lifetime of LED lighting system using equation induced the slope of degradation line.

  • PDF

Potential Revenue Prediction Method of ESS using Lithium-ion Battery (리튬이온 배터리를 이용한 에너지저장장치 시스템의 잠재수익 산출 기법)

  • Won, Il-Kuen;Kim, Do-Yun;Jang, Young-Hee;Choo, Kyung-min;Hong, Sung-woo;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.423-424
    • /
    • 2016
  • Recently, the mass production of Energy storage system (ESS) is actively perform around world. Energy storage system is a technique that stores power to energy storage device to supply energy into grid and load at peak-load. Therefore, the efficient energy management is available by using ESS system. The life of Lithium-ion battery is varied corresponding to the power usage, especially selected depth of discharge (DOD). The lifetime of battery is the one of the most issue of the ESS system because of its stability and reliability. Therefore, lifetime management of battery and power converter of ESS module is required. In this paper, the battery lifetime management method estimating residual power and lifetime of lithium ion battery of ESS system is proposed. Also, total avenue prediction of ESS system is simulated considering the total lifetime of battery.

  • PDF

Lifetime Distribution Model for a k-out-of-n System with Heterogeneous Components via a Structured Markov Chain (구조화 마코프체인을 이용한 이종 구성품을 갖는 k-out-of-n 시스템의 수명분포 모형)

  • Kim, Heungseob
    • Journal of Applied Reliability
    • /
    • v.17 no.4
    • /
    • pp.332-342
    • /
    • 2017
  • Purpose: In this study, the lifetime distribution of a k-out-of-n system with heterogeneous components is suggested as Markov model, and the time-to-failure (TTF) distribution of each component is considered as phase-type distribution (PHD). Furthermore, based on the model, a redundancy allocation problem with a mix of components (RAPMC) is proposed. Methods: The lifetime distribution model for the system is formulated by the structured Markov chain. From the model, the various information on the system lifetime can be ascertained by the matrix-analytic (or-geometric) method. Conclusion: By the generalization of TTF distribution (PHD) and the consideration of heterogeneous components, the lifetime distribution model can delineate many real systems and be exploited for developing system operation policies such as preventive maintenance, warranty. Moreover, the effectiveness of the proposed RAPMC is verified by numerical experiments. That is, under the equivalent design conditions, it presented a system with higher reliability than RAP without component mixing (RAPCM).

Power Aware Routing Protocol in Multimedia Ad-hoc Network Considering Hop Lifetime of Node

  • Huh, Jun-Ho;Kim, Yoondo;Seo, Kyungryong
    • Journal of Multimedia Information System
    • /
    • v.1 no.2
    • /
    • pp.101-110
    • /
    • 2014
  • The purpose of this research is to extend Ad-hoc network system lifetime with the proposed routing protocol which has considered hop lifetimes of the nodes while guaranteeing QoS in the establishment process of Ad-hoc network communication paths. Based on another power aware routing system that proposed in the advanced research [1], we are proposing an alternative power aware routing system in which nodes' hop lifetimes are compared in order to extend the lifetime of an Ad-hoc network system and delay factors have been considered for the assurance of QoS. The research of the routing protocol in this paper, which aims to maximize the system survival time considering power consumption status during the path searching in MANET and pursues the mechanism that controls hop delays for the same reason, can be applied to the study of WSN. The study concerning such phenomena is essential so that the proposed protocol has been simulated and verified with NS-2 in Linux system focusing on the lifetimes of the hops of the nodes. Commercialization of smart devices and arrival of the ubiquitous age has brought about the world where all the people and things are connected with networks. Since the proposed power aware method and the hop delay control mechanism used to find the adequate communication paths in MANET which mainly uses batteries or in WSN, they can largely contribute to the lifetime extension of the network system by reducing power consumptions when utilized for the communications attempts among soldiers during military operation, disaster areas, temporary events or exhibitions, mobile phone shadow areas, home networks, in-between vehicle communications and sense networks, etc. This paper presents the definitions and some advantages regarding the proposed outing protocol that sustain and extend the lifetime of the networks.

  • PDF

Conceptual Design for Lifetime Test System for LED Headlamps on Rolling Stock (철도차량용 LED전조등의 수명시험 장치 구축을 위한 개념설계)

  • Ohn, Jung-Ghun;Jeong, Ki-Seok;Chung, Jong-Duk
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.2
    • /
    • pp.111-116
    • /
    • 2015
  • LED luminaires as a lighting system have attracted much research attention due to their high efficiency and long lifetimes. However, disappointing outcomes have been noted in terms of performance levels and lifetimes as compared to desired system requirements in practice due to certain electrical and thermal characteristics of LEDs. LM-80 and TM-21 established by IESNA are the best known standards for lifetime test procedures and estimation techniques. However, they only handle LED light sources without guaranteeing the LED luminaire in a reliability test. They also operate for more than 6,000 hours and undergo various stresses, such as the operating current and temperature. Therefore, a lifetime standard for LED luminaires has not yet been established. This paper proposes a conceptual design of a lifetime test system for LED headlamps depending on the operating environment. Eventually, this method can assist with evaluations of the validity of lifetime standard tests of LED headlamps.

An Excess Carrier Lifetime Extraction Method for Physics-based IGBT Models

  • Fu, Guicui;Xue, Peng
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.778-785
    • /
    • 2016
  • An excess carrier lifetime extraction method is derived for physics-based insulated gate bipolar transistor (IGBT) models with consideration of the latest development in IGBT modeling. On the basis of the 2D mixed-mode Sentaurus simulation, the clamp turn-off test is simulated to obtain the tail current. The proposed excess carrier lifetime extraction method is then performed using the simulated data. The comparison between the extracted results and actual lifetime directly obtained from the numerical device model precisely demonstrates the accuracy of the proposed method.

The Prediction of Failure Probability of Bridges using Monte Carlo Simulation and Lifetime Functions (몬테칼로법과 생애함수를 이용한 교량의 파괴확률예측)

  • Seung-Ie Yang
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.116-122
    • /
    • 2003
  • Monte Carlo method is one of the powerful engineering tools especially to solve the complex non-linear problems. The Monte Carlo method gives approximate solution to a variety of mathematical problems by performing statistical sampling experiments on a computer. One of the methods to predict the time dependent failure probability of one of the bridge components or the bridge system is a lifetime function. In this paper, FORTRAN program is developed to predict the failure probability of bridge components or bridge system by using both system reliability and lifetime function. Monte Carlo method is used to generate the parameters of the lifetime function. As a case study, the program is applied to the concrete-steel bridge to predict the failure probability.

The Analysis of an oil circulating lubrication system to extend the lifetime of the Reducer. (기술사마당_기술해설 - 감속기 수명 연장을 위한 오일 순환시스템의 마모분석 해석)

  • Lee, Jae-Keun
    • Journal of the Korean Professional Engineers Association
    • /
    • v.43 no.2
    • /
    • pp.60-63
    • /
    • 2010
  • This analysis introduces a lube oil circulation system for a big reducer in the chemical process industries. We have been operating the system and found out that the system greatly helped us save the maintenance cost by increasing the lifetime of the reducer.

  • PDF

Reliability Assessment Criteria of Air Quality System (자동차용 유해가스 검출기의 신뢰성 평가기준)

  • Choi, Man-Yeop;Park, Dong-Kyu;Oh, Geun-Tae;Jeong, Hai-Sung
    • Journal of Applied Reliability
    • /
    • v.10 no.4
    • /
    • pp.279-297
    • /
    • 2010
  • AQS(Air Quality Control System) is the important part of a car air conditioning system. This device intercepts automatically the influx of harmful waste gas. In this paper reliability assessment criteria for AQS are established in terms of quality certification test and lifetime test. The former quality certification test comprises general performance test and environmental test. Items which pass the test undergo lifetime test which guarantees the extent of mean lifetime with certain confidence.

Remaining Life Prediction of Deteriorating Bridges Based on Lifetime System Reliability (교량의 생애체계신뢰성해석에 기초한 잔존수명예측 연구)

  • Yang, Seung Ie;Han, Sang Chul
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.467-476
    • /
    • 2001
  • The construction of highway bridges is almost complete in many countries including the United States. The government and highway agencies change the focus from constructing to maintaining To maintain the bridges effectively there is an urgent need to assess actual bridge loading carrying capacity and to predict their remaining life. The system reliability techniques have to be used for this purpose. Based on lifetime distribution (function) techniques this study illustrates how typical highway bridges can be modeled to predict their remaining life. The parameters of lifetime distribution are generated by Monte. The results can be used for optimization of planning interventions on existing bridges.

  • PDF