• Title/Summary/Keyword: system generator

Search Result 4,045, Processing Time 0.033 seconds

Performance Analysis of Shell Coal Gasification Combined Cycle systems (Shell 석탄가스화 복합발전 시스템의 성능해석 연구)

  • Kim, Jong-Jin;Park, Moung-Ho;Song, Kyu-So;Cho, Sang-Ki;Seo, Seok-Bin;Kim, Chong-Young
    • Journal of Energy Engineering
    • /
    • v.6 no.1
    • /
    • pp.104-113
    • /
    • 1997
  • This study aims to develop an analysis model using a commercial process simulator-ASPEN PLUS for an IGCC (Integrated Gasification Combined Cycle) system consisting a dry coal feeding, oxygen-blown entrained gasification process by Shell, a low temperature gas clean up process, a General Electric MS7001FA gas turbine, a three pressure, natural recirculation heat recovery steam generator, a regenerative, condensing steam turbine and a cryogenic air separation unit. The comparison between those results of this study and reference one done by other engineer at design conditions shows consistency which means the soundness of this model. The greater moisture contents in Illinois#6 coal causes decreasing gasifier temperature and the greater ash and sulfur content hurt system efficiency due to increased heat loss. As the results of sensitivity analysis using developed model for the parameters of gasifier operating pressure, steam/coal ratio and oxygen/coal ratio, the gasifier temperature increases while combustible gases (CO+H2) decreases throughout the pressure going up. In the steam/coal ratio analysis, when the feeding steam increases the maximum combustible gas generation point moves to lower oxygen/coal ratio feeding condition. Finally, for the oxygen/coal ratio analysis, it shows oxygen/coal ratio 0.77 as a optimum operating condition at steam/coal feeding ratio 0.2.

  • PDF

Development of Heat Dissipation Measuring System for 1.2-kW BLDC Motor (1.2kW 급 BLDC 모터의 열 발산 측정 시스템 개발)

  • Lee, Injun;Ye, Jungwoo;Lee, Daehun;Hwang, Pyung;Shim, Jaesool
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1423-1428
    • /
    • 2013
  • In this study, a heat dissipation measurement system is developed to analyze a 1.2-kW BLDC motor. It is important to check the temperature of the motor because an increase in temperature causes problems in the motor insulations, which in turn influences the motor life. A generator for a vehicle is installed to set up a load. We changed the load from 165 to 495 W. While the rpm varies from 2000 to 4000 under various load conditions, the changes in temperature were measured for the operating period by using a thermocouple. The results of experiments conducted under natural convection conditions suggest that the temperature was not stationary with the rpm, load, and coil of the motor and it kept increasing over $120^{\circ}C$. However, under forced convection conditions, the temperature stationarily reached $84^{\circ}C$ after 4000 s. The difference between the maximum and the minimum temperatures was $10-26^{\circ}C$ with an increase in the rpm and load. The orders of high temperature were as follows: motor coil (Ch#1), side of motor surface (Ch#5), inside of motor cap (Ch#2), upper side of motor surface (Ch#4), and inner wall of the motor (Ch#3).

The New X-ray Induced Electron Emission Spectrometer

  • Yu.N.Yuryev;Park, Hyun-Min;Lee, Hwack-Ju;Kim, Ju-Hwnag;Cho, Yang-Ku;K.Yu.Pogrebitsky
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.5-6
    • /
    • 2002
  • The new spectrometer for X-ray Induced Electron Emission Spectroscopy (XIEES) .has been recently developed in KRISS in collaboration with PTI (Russia). The spectrometer allows to perform research using the XAFS, SXAFS, XANES techniques (D.C.Koningsberger and R.Prins, 1988) as well as the number of techniques from XIEES field(L.A.Bakaleinikov et all, 1992). The experiments may be carried out with registration of transmitted through the sample x-rays (to investigate bulk samples) or/and total electron yield (TEY) from the sample surface that gives the high (down to several atomic mono-layers in soft x-ray region) near surface sensitivity. The combination of these methods together give the possibility to obtain a quantitative information on elemental composition, chemical state, atomic structure for powder samples and solids, including non-crystalline materials (the long range order is not required). The optical design of spectrometer is made according to Johannesson true focusing schematics and presented on the Fig.1. Five stepping motors are used to maintain the focusing condition during the photon energy scan (crystal angle, crystal position along rail, sample goniometer rail angle, sample goniometer position along rail and sample goniometer angle relatively of rail). All movements can be done independently and simultaneously that speeds up the setting of photon energy and allows the using of crystals with different Rowland radil. At present six curved crystals with different d-values and one flat synthetic multilayer are installed on revolver-type monochromator. This arrangement allows the wide range of x-rays from 100 eV up to 25 keV to be obtained. Another 4 stepping motors set exit slit width, sample angle, channeltron position and x-ray detector position. The differential pumping allows to unite vacuum chambers of spectrometer and x-ray generator avoiding the absorption of soft x-rays on Be foil of a window and in atmosphere. Another feature of vacuum system is separation of walls of vacuum chamber (which are deformed by the atmospheric pressure) from optical elements of spectrometer. This warrantees that the optical elements are precisely positioned. The detecting system of the spectrometer consists of two proportional counters, one scintillating detector and one channeltron detector. First proportional counter can be used as I/sub 0/-detector in transmission mode or by measuring the fluorescence from exit slit edge. The last installation can be used to measure the reference data (that is necessary in XANES measurements), in this case the reference sample is installed on slit knife edge. The second proportional counter measures the intensity of x-rays transmitted through the sample. The scintillating detector is used in the same way but on the air for the hard x-rays and for alignment purposes. Total electron yield from the sample is measured by channeltron. The spectrometer is fully controlled by special software that gives the high flexibility and reliability in carrying out of the experiments. Fig.2 and fig.3 present the typical XAFS spectra measured with spectrometer.

  • PDF

Comparison of Methanol Extracts from Vegetables on Antioxidative Effect under In Vitro and Cell System (채소류 메탄올 추출물의 In Vitro와 Cell System에서의 항산화능 비교)

  • Lee, Young A;Kim, Hyun Young;Cho, Eunj Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.8
    • /
    • pp.1151-1156
    • /
    • 2005
  • The comparison on antioxidative activity of 13 kinds of vegetables that showed efficient oxygen radical absorbance capacity was carried out under in uitro and cellular model using LLC-$ PK_{1}$ renal epithelial cell, and also the total Phenol contents were analyzed. Beets, eggplant, and kale exerted the strong 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging effect and also these vegetables showed high contents of total phenol, indicating the positive relationship between DPPH radical scavenging effect and total phenol content. In addition, the treatment of 1 mM 2,2'-azobis (2-amidinopropane) dihydrochloride for 24 hrs to LLC-$PK_{1}$ cell susceptible to oxidative stress led to the decline of cell viability to 68.1$\%$, whereas the cellular oxidative damage was ameliorated by vegetables, especially eggplant and cauliflower, resulting in the elevation of cell viability to higher than 90$\%$ at the concentration of 5 $\mu$g/mL. This study suggests that 13 kinds of vegetables exert antioxidative activity under in uitro and cellular oxidative damage model, in particular among them eggplant showed the most effective antioxidative activity with higher total phenol content.

Comparison of Control Strategies for Military Series-Type HEVs in Terms of Fuel Economy Based on Vehicle Simulation (시뮬레이션을 이용한 군용 직렬형 HEV 의 주행 전략에 따른 연비 성능 비교에 관한 연구)

  • Jung, Dae-Bong;Kim, Hyung-Jun;Kang, Hyung-Mook;Park, Jae-Man;Min, Kyoung-Doug;Seo, Jung-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.31-36
    • /
    • 2012
  • Military vehicles, compared to conventional vehicles, require higher driving performance, quieter operation, and longer driving distances with minimal fuel supplies. The series hybrid electric vehicle can be driven with no noise and has high initial startup performance, because it uses only a traction motor that has a high startup torque to drive the vehicle. Moreover, the fuel economy can be improved if the vehicle is hybridized. In series hybrid electric vehicles, the electric generation system, which consists of an engine and a generator, supplies electric energy to a battery or traction motor depending on the vehicle driving state and battery state of charge (SOC). The control strategy determines the operation of the generation system. Thus, the fuel economy of the series hybrid electric vehicle relies on the control strategy. In this study, thermostat, power-follower, and combined strategies were compared, and a 37% improvement in the fuel economy was implemented using the combined control strategy suggested in this study.

Development of Imaging Gamma Probe Using the Position Sensitive PMTube (위치 민감형 광전자증배관을 이용한 영상용 감마프로브의 개발)

  • Bong, Jeong-Gyun;Kim, Hui-Jung;So, Su-Gil;Kim, Han-Myeong;Lee, Jong-Du;Gwon, Su-Il
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.107-113
    • /
    • 1999
  • The purpose of this study was to develop a miniature imaging gamma probe with high performance that can detect small or residual tumors after surgery. Gamma probe detector system consists of NaI(Tl) scintillator, position sensitive photomultiplier tube (PSPMT), and collimator. PSPMT was optically coupled with 6.5 mm thick, 7.62 cm diameter of NaI(Tl) crystal and supplied with -1000V for high voltage. Parallel hexagonal hole collimator was manufactured for characteristics of 40-mm hole length, 1.3-mm hole diameter, and 0.22 mm septal thickness. Electronics consist of position and trigger signal readout systems. Position signals were obtained with summing, subtracting, and dividing circuit using preamplifer and amplifier. Trigger signals were obtained using summing amplifier, constant fraction discriminator, and gate and delay generator module with preamplifer. Data acquisition and processing were performed by Gamma-PF interface board inserted into pentium PC and PIP software. For imaging studies, flood and slit mask images were acquired using a point source. Two hole phantom images were also acquired with collimator. Intrinsic and system spatial resolutions were measured as 3.97 mm and 5.97 mm, respectively. In conclusion, Miniature gamma probe images based on the PSPMT showed good image quality, we conclude that the miniature imaging gamma probe was successfully developed and good image data were obtained. However, further studies will be required to optimize imaging characteristics.

  • PDF

A Single-Bit 2nd-Order CIFF Delta-Sigma Modulator for Precision Measurement of Battery Current (배터리 전류의 정밀 측정을 위한 단일 비트 2차 CIFF 구조 델타 시그마 모듈레이터)

  • Bae, Gi-Gyeong;Cheon, Ji-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.3
    • /
    • pp.184-196
    • /
    • 2020
  • In this paper, a single-bit 2nd-order delta-sigma modulator with the architecture of cascaded-of-integrator feedforward (CIFF) is proposed for precision measurement of current flowing through a secondary cell battery in a battery management system (BMS). The proposed modulator implements two switched capacitor integrators and a single-bit comparator with peripheral circuits such as a non-overlapping clock generator and a bias circuit. The proposed structure is designed to be applied to low-side current sensing method with low common mode input voltage. Using the low-side current measurement method has the advantage of reducing the burden on the circuit design. In addition, the ±30mV input voltage is resolved by the ADC with 15-bit resolution, eliminating the need for an additional programmable gain amplifier (PGA). The proposed a single-bit 2nd-order delta-sigma modulator has been implemented in a 350-nm CMOS process. It achieves 95.46-dB signal-to-noise-and-distortion ratio (SNDR), 96.01-dB spurious-free dynamic range (SFDR), and 15.56-bit effective-number-of-bits (ENOB) with an oversampling ratio (OSR) of 400 for 5-kHz bandwidth. The area and power consumption of the delta-sigma modulator are 670×490 ㎛2 and 414 ㎼, respectively.

Stereo Vision based on Planar Algebraic Curves (평면대수곡선을 기반으로 한 스테레오 비젼)

  • Ahn, Min-Ho;Lee, Chung-Nim
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.1
    • /
    • pp.50-61
    • /
    • 2000
  • Recently the stereo vision based on conics has received much attention by many authors. Conics have many features such as their matrix expression, efficient correspondence checking, abundance of conical shapes in real world. Extensions to higher algebraic curves met with limited success. Although irreducible algebraic curves are rather rare in the real world, lines and conics are abundant whose products provide good examples of higher algebraic curves. We consider plane algebraic curves of an arbitrary degree $n{\geq}2$ with a fully calibrated stereo system. We present closed form solutions to both correspondence and reconstruction problems. Let $f_1,\;f_2,\;{\pi}$ be image curves and plane and $VC_P(g)$ the cone with generator (plane) curve g and vertex P. Then the relation $VC_{O1}(f_1)\;=\;VC_{O1}(VC_{O2}(f_2)\;∩\;{\pi})$ gives polynomial equations in the coefficient $d_1,\;d_2,\;d_3$ of the plane ${\pi}$. After some manipulations, we get an extremely simple polynomial equation in a single variable whose unique real positive root plays the key role. It is then followed by evaluating $O(n^2)$ polynomials of a single variable at the root. It is in contrast to the past works which usually involve a simultaneous system of multivariate polynomial equations. We checked our algorithm using synthetic as well as real world images.

  • PDF

A New Efficient Private Key Reissuing Model for Identity-based Encryption Schemes Including Dynamic Information (동적 ID 정보가 포함된 신원기반 암호시스템에서 효율적인 키 재발급 모델)

  • Kim, Dong-Hyun;Kim, Sang-Jin;Koo, Bon-Seok;Ryu, Kwon-Ho;Oh, Hee-Kuck
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.2
    • /
    • pp.23-36
    • /
    • 2005
  • The main obstacle hindering the wide deployment of identity-based cryptosystem is that the entity responsible for creating the private key has too much power. As a result, private keys are no longer private. One obvious solution to this problem is to apply the threshold technique. However, this increases the authentication computation, and communication cost during the key issuing phase. In this paper, we propose a new effi ient model for issuing multiple private keys in identity-based encryption schemes based on the Weil pairing that also alleviates the key escrow problem. In our system, the private key of a user is divided into two components, KGK (Key Description Key) and KUD(Key Usage Desscriptor), which are issued separately by different parties. The KGK is issued in a threshold manner by KIC (Key Issuing Center), whereas the KW is issued by a single authority called KUM (Key Usage Manager). Changing KW results in a different private key. As a result, a user can efficiently obtain a new private key by interacting with KUM. We can also adapt Gentry's time-slot based private key revocation approach to our scheme more efficiently than others. We also show the security of the system and its efficiency by analyzing the existing systems.

Research on the use of Therapeutic Linear accelerator Quality Control using EPR/alanine Dosimeter (EPR/알라닌 선량계를 이용한 치료용 선형가속기 정도관리 활용 연구)

  • Yoon-Ha Kim;Hyo-Jin Kim;Yeong-Rok Kang;Dong-Yeon Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.3
    • /
    • pp.239-248
    • /
    • 2024
  • Radiation therapy uses high energy, which can have side effects on the human body. Therefore, it is important to ensure that the appropriate dose is set for irradiation and to have confidence in the radiation produced by the generator. The EPR/Alanine dosimetry system is characterized by water equivalence, dose response linearity, and low fading, which makes it useful for quality control of radiation therapy equipment. In this study, we compared the signal and dose response curves of EPR/Alanine dosimetry by mass of alanine using 6 MV energy of a LINAC. An alanine dosimeter and EPR spectrometer from Burker, and a LINAC from Elekta, were used. A dose response curve and a 1st order regression equation were constructed from the irradiated dose and the EPR signal from the alanine dosimeter. We compared the signal magnitude and dose response curve with mass and checked the confidence through the measurement uncertainty of the dose response curve. As a result, it was found that the magnitude of the EPR signal increased by about 1.3 times at 64.5 mg, and the sensitivity of the dose response curve increased as the mass increased. The measurement uncertainty was evaluated to be between 5.84 % and 8.93 %. Through this study, it is expected that the EPR/alanine dosimetry system can be applied to the quality assurance and quality control of a LINAC.