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Abstract Recently the stereo vision based on conics has received much attention by many authors.
Conics have many features such as their matrix expression, efficient correspondence checking,
abundance of conical shapes in real world. Extensions to higher algebraic curves met with limited
success. Although irreducible algebraic curves are rather rare in the real world, lines and conics are
abundant whose products provide good examples of higher algebraic curves. We consider plane
algebraic curves of an arbitrary degree »22 with a fully calibrated stereo system. We present closed
form solutions to both correspondence and reconstruction problems. Let #,7%.z be image curves and
plane and VvCHg the cone with generator (plane) curve ¢ and vertex p. Then the relation
VColh) = VCo{VColf) N m gives polynomial equations in the coefficient 4,4, 4 of the plane . After
some manipulations, we get an extremely simple polynomial equation in a single variable whose unique
real positive root plays the key role. It is then followed by evaluating o(»% polynomials of a single
variable at the root. It is in contrast to the past works which usually involve a simultaneous system
of multivariate polynomial equations. We checked our algorithm using synthetic as well as real world
images.

1. Introduction

- The present studies were supported in part by the Basic The goal of stereo vision is to recover 3D
Science Research Institute Program, Ministry of Education,

1996, Project No. BSRI-96-1430.

Y3 A 2T oS 2F

to 8 9 EguEsde 249 pair of its images using a stereo rig. It consists of

mhahn@postech.ac.kr three stages:

1. Decide on primitives.
cnlee@euclid.postech.ac.kr

22 19989 89 179 2. Solve the correspondence problem between the

AAGE ;1999 109 5¥ two Images.

information of a real world object in space from the
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3. Reconstruct the object in space.

Traditionally points and lines have been used as
which the difficult
correspondence has to be solved [1,4,79]. Recently

primitives in problem  of
these primitives were replaced by conics and plane
algebraic curves of higher degree [2,8,12]). These are
require only set-to-set

more compact and

correspondence which is easier to solve. Other
advantages of using conics as primitives have been
well described in [28,12] and hence we will not
discuss on this any further. A number of papers
suggested desirabilitiy of algebraic curves of higher
[2,35816,18] as they

information, but more work seems needed in order

degree contain  more
that they be as successful as conics. One obvious fact
of usefulness is that a line and a conic together can
be regarded as a cubic curve represented by the
product of their equations. This indeed was the case
in [5] where the authors used the well known cubic
invariants to solve pose problem.

In this paper we consider the problems of
correspondence and reconstruction of a plane
algebraic curve of degree =2 in space from their two
stereo images. We assume that our stereo system
consists of a pair of identical pinhole cameras and
that the system is fully calibrated. A good in-
troduction to this problem is in the paper by Ma [8].
There is another kind of reconstruction problem
which has been addressed in a number of papers,
namely projective reconstruction requiring no
calibration. A good comparative summary of recent
works on this is well described by Rothwell et al. in
{15].

We are interested in an exact (euclidean) recon-
struction rather than a projective reconstruction. For
our problem we construct two polynomials with
coefficients which are polynomials in the coefficients
of the unknown plane that contains the object curve.
The two polynomials must be equal if and only if the
pair of the stereo images are those of the same object
curve in space. From the constraint of the equality,
we derive under a certain non-vanishing condition a

number of equations in a single unknown whose
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solution leads to the recovery of the object plane
containing the object curve in space and hence the
object curve itself.

The major work along this line is the paper by Ma
[8] which presented two methods for solving the
stereo problem: the one based on Proposition 1 in his
paper involves too many multivariate polynomial
equations whereas his alternative method based on
elimination theory involves polynomial equations in
several variables of high degree as well as certain
unresolvable variable. Another paper in the same vein
as ours is Xu [18] which did not even fully analyze
the case of conics. Our analytical results are tested
using synthetic as well as real world images. Most
recently the independent work by Lili [6] shows the
similar results as ours.

The rest of our paper is organized as follows.
Section 2 sets up notation and preliminary
observations, section 3 states basic constraints and
define a certain number p which plays a key role,
section 4 presents our main results on reconstruction
and correspondence, section 5 reports on experimental
results on cubic and quartic curves, one synthetic and
the other real world images, and the last section
discusses advantages and disadvantages of our
method and further research works.

2. Notation and preliminary observation

A stereo system usually consists of two identical
pinhole cameras set apart at a certain distance and
oriented differently (Figure la). We assume that our
system is fully calibrated. In particular the
transformation consisting of rotation and translation
from one camera coordinate frame to the other is
known.

Our primitives will be plane algebraic curves of
degree #22. It is easy to see that a projective
transformation of a plane algebraic curve is also an
algebraic curve of the same degree. In particular the
stereo images of a plane algebraic curve are also
plane algebraic curves of the same degree.

For computational simplicity we work with simpler
stereo rig in which the two cameras, ¢, and C,, are

oriented identically, that is, their imaging planes lie on
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the same plane, known as a non-convergent system.
(Figure 1b)

coupled for computational convenience (Figure 2).

(a) Convergent Stereo Set-up

(b) Non-convergent Stereo Set-up

Fig. 1 A general stereo set-up and viewing cones.

Fig. 2 Nonconvergent Set~up with baseline distance d

Conical surfaces

Suppose we are given a pair of stereo images
represented by polynomials # and £ of degree = in
the coordinates of the imaging planes of the two
cameras ¢, and C, respectively,

ho= i+,g¢=n(j?k)aiik“§0{ %))
L=y ,Z;:n(;k)b,;kuévé @

where the multinomial coefficient (ﬁ)z# is

Let (x,y.2) denote the coordinate system for the
camera C,. Let 4 be the distance between the two
cameras C, and C,. We assume that the coordinate
systems for C; and C; differ only in the x-axis so
that the coordinates (x;,y,2) in the €, frame and the
in the ¢, frame

coordinates (¥ +d, 52 =(x.5,2)

represent the same point where y=y,=y and
z=z =2z, We also assume that for each camera C,
the z-axis is the optical axis, the origin is the optical
center o, and the imaging plane is the plane parallel
to the x— » plane located at the unit distance from the
origin in the positive direction.

A planar curve in space and a point P not on the
plane containing the curve spans a surface consisting
of lines through the point P and points of the curve.
This surface will be referred to as the (conical)
surface (or simply cone) spanned by the curve and
the point P (the vertex). If the vertex is at the origin
then such a surface is represented by a homogeneous
polynomial in x,yz Suppose the polynomial £ (1)
and f, (2) represent the images on the cameras ¢
and C, of a planar algebraic curve f in space. Then

the surfaces F, and F, spanned by these curves
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through the respective vertices at o, and o, are given

as follows.

Fi: 1'+/§F;>=n(1;tk) a ukxiylzk=0 (3)
Foi B () bt dvai=0 @

Note that equation (3) is homogeneous whereas
equation (4) is not because it is expressed in the ¢,
If the rotation part of the
transformation between C, and C, was not assumed

coordinate frame.

to be trivial then the equation for F, would be more
complicated without any theoretical advantage.
We use C, coordinate frame for the world

coordinate frame and drop the subscript 1 from «x,.

Object plane in space

To reconstruct the object curve in space from its
stereo images is to detect the one that projects onto
the given stereo images. In the case of conic Quan
[14] shows that there are two distinct conics in space
which project onto the same pair of the stereo images.
In other words there are two distinct planes each
containing a conic which projects onto the same pair
of images. It turns out that one of them separates the
two optical centers and the other does not. Although
one might expect the same phenomena for arbitrary
algebraic curves it is not true in general. Bézout's
Theorem says that the intersection of two planar
curves of degrees m,» consists of mn points. Since
the degree of a space curve is the number of
intersection points of the curve and a generic
hyperplane, the intersection of two surfaces of degree
m,n is a space curve of degree mn. Hence the
intersection of the two cones in our case is a space
curve of degree »’. Moreover the curve has a planar
component of degree = by the assumption and the
remaining component (not necessarily irreducible) of
degree »’—=# lying on a surface of degree »’. If »=2,
the remaining component of the intersection of the
two cones is of degree 2 which is a conic and hence
is contained in a plane. This explains why there are
two distinct planes each containing a conic which
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projects onto the same pair of images. However, if
the planar surface containing the object curve is not
transparent then the one having the optical center on
the same side is the correct plane and the object
curve is the intersection of this plane and the conical
surface F, or equivalently Fy.

A plane in space is represented by
dix+dyy+diz+d,=0. We assume that the plane is
visible from the two optical centers, one of them is
the origin of the world coordinate frame. Such a plane
cannot pass through any of these points. This implies
40 and hence we can choose ¢ (the distance
between the two cameras) for d,. Thus such a plane

can be represented by,
7rd1x+ d2y+d32+d =90 5)

The assumption of visibility from the other optical
point implies d,=+1 since the point has the coordinates
(—d,0,0). This fact will be very important in this
paper.

¢

Suppose the solution plane =z is given by =n
x + d = 0 where n=(d,,d;.d))" and x=(x.2)" Let
y=(n o, +d)(n oy +d) The two viewpoints
o, are on the same side of « if and only if 0.

0,=(0,0,0)’,

o, and
Since 0,=(~d,0,0)', we have
r=(dd(-D+d)=d*(1—dy)
which implies 0 if and only if p=1-4d,>0.

3. Basic constraints and the
struction key

recon-

Let I be the intersection of the plane =z given by
equation (5) and the conical surface given by equation
(4) and let F; be the conical surface spanned by the
curve I and the vertex at the origin o of the world
coordinate frame. In Figure 2, F, is the left cone, F,
is the right cone, and = is the plane containing the
big ellipse in the center of figure. Then I is the
intersection curve of F, and =z, and F; is the cone

generated by o and TI.

Lemma 1 The conical surface F; is given by
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where p=1-d,.

This is proved by eliminating the variable o from
equations (4) and (5) which is not difficult.

The following self-evident fact provides the key
constraint in this paper.

Lemma 2 £ and f, are the images of the same
algebraic curve lying on the plane = if and only if

F,=pF; for some constant 7 (7)

The equation in this lemma has only four
unknowns, 7 o=1-d, d,ds. Later in this section we
will derive a quadratic equation in the single variable
e on which all the other variables depend linearly.
This is where we differ from Ma (8] in which his
factorization condition provides equations of degree =
in the same set of four unknowns with unresolvable

constant.

Coefficient comparison

By comparing the coefficients of the term x'yz* of
the two sides of the above equation (7), we obtain the
following basic formula.

- Correspondence checking eguations

a@= Tlpio s;,(é)b“*’*”“""" (=) (—d3) (g)
0srsk

where p=1—4d,

For a closed form solution to the reconstruction
problem, we need only determine the plane =
containing the object curve in space, or the
coefficients d,.d,.dy of the plane. We do this simply
by solving a first few equations in (8). As it turns
out, the first two equations express d; and d; as first
degree polynomials of the variable p=1—4,, and the

next three equations are of the form Ap*+ B=0. If the

images f, and £ correspond to each other then these
three equations must have a pair of common real
solutions, one positive and the other negative. The
positive solution is the correct one if the planar
surface containing the object curve is not transparent.

Here are the details. From formula (8) for the
coefficients of the terms z", x*'y, x" 'z, we obtain

the following three formulas.

anp0 = ”ﬂ"bnloo
Gurio = 70" (ba-110—d2bno0)
Gprgr = 70" l(bn—mx—dabnoo)

We assume b,o0+0. Since po+0, this implies
a.00%0. From the above three equations, we obtain

the following two equations.

@n_110 _ P " Mbut10=Gbaod _ A bn—llﬁ_d)
2T p"ba00 e buoo 2
@n-108 _ 0" b1, —dibago) . ba-101 —d)
@ago 2"ba00 0 baoo 3

Let A[,-A.=a,'j[¢/am and B,‘,‘;,=bﬁlz/b,m. Then we have

dy
s

Boy10mp Aurra
Bu191=0 Ap101 ©

Therefore once e is determined, the coefficients
d,.dy,d; are determined by these expressions, and
hence so is the plane .

From formula (8) for the coefficients of the terms,

n—2.2 n-2 n—2.2
1

2" 3% 1" %z and x""%’ we obtain the following

three quadratic equations in e only.

(A 10— A2 0P+ Bugzo= Bhaciio = 0 10)
(Apz11=An101Awm1100°+Bu 0 1Bar 10— Baay =0 (11)
(A% 1= Anz020+Bugor~Baro1 =0 (12)

All these equations have the form Ae*+ B=0. Solve
the first non-vanishing equation for . If they all
vanish it can be shown that the next equation takes
the form Ap’+B=0. More generally we can prove the
following lemma.

Lemma 3 The first non-vanishing equation in p
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takes the form Ap ™+ B=0.

Proof See appendix A.

In the last paragraph of the section 2 we assumed
the non-transparency for the object plane, hence the
negative root is meaningless. It follows from lemma 3
that there exists one or no positive real root e of the

first non-vanishing equation.

Definition The reconstruction key of the two
images 4 and £ is the unigue positive real root of
the first non-vanishing polynomial in lemma 3 if it

exists.

If all the equations vanish then the object curve
can be shown to be the set of #» overlapping lines,
that is, a single line in reality. Details are in appendix
A. In this case we define the reconstruction key to be
0,

We considered the case &,,, = 0. Lili [6] stated
that “'‘We can always choose a canonical pair of
coordinate system such that a@,00 6,00 = 0."
However, we found it impossible in general. This
phenomenon is due to the difference between rotating
the object and rotating the image [11]. However the
subset defined by the equation 5,,, = 0 in the space
of all coefficient vectors is a lower dimensional
subspace and hence the exact probability of 5,9, = 0
is zero. Hence we may assume that 5,,, = 0 does

not vanish for real-world images.

4. Correspondence and reconstruction

In this section we present our main results on
closed form solutions to the fundamental problems of
stereo vision, correspondence and reconstruction of
plane algebraic curves of degree =»=2. From the
discussions in the preceding two sections, we have

the following theorem.

Theorem Suppose that #.4 (cf. (1), (2)) are
algebraic curves of degree » each on ¢, G,
respectively. Then £, and #, are the corresponding

images of the same plane algebraic curve in space if

and only if the reconstruction key e exists and
satisfies all the equations in (8). In this case,
(1) the planar surface r is given by (5)

(1—p)x+ dpy+ dsz+d=0

with d,=1~p,dy, d; defined by (9), and
(2) the object curve is the intersection of z and the

conical surface F, (cf.(3)).

We formulate the above theorem into an algorithm
(Algorithm 1) for checking correspondence and

reconstructing the object curve.

Algorithm 1
Suppose two curves £ and f, are given on the

imaging planes of €, and G,

h = na,yku{vi witha,, 5 o#0

i+ Th=
fy = iﬂ;:nbﬁ,,uév’ withb , 3 ¢#0

1. For all ijk do 1 and 2 below.

-1 -1

@t =a .‘;k(,-?k) voba i =by (;k)

(to express in the form of (1) and (2))
2. Put Ay :i=awla,oo Ba =balbuoo
3. Find the reconstruction key p<o,

If o= goto 6.

If o does not exist then goto 7.
4 Put 4, :=1-p and compute d, and 4, using (9).
5 For all i,

Ba:=e" A= T (B Bisserouer (Ca)=ap” (13)

-2
Compute E = =357y uEw

If E < & (preassigned tolerance) then return ‘‘the
two image curves f, and f, are the images of the
same planar curve in space, and the curve is the
intersection of the plane = in the above theorem and
the conical surface given by (3)."" Stop.

6. If A, 10Bu-101=Au101Bu-110 < ¢

then ‘“‘Two lines are correspondent and their
common preimage Is given intersection of the
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following two planes.”” Stop.

{”1 ta A0t A2 =0
A d+ x1 + Bu119¥t Busio12 = 0

Otherwise goto 7.

7. Return ', and f, do not correspond to each
other.”’ Stop.

The above algorithm takes time for the steps 3 and
5. To perform step 3, we have to check equation (10),
(1), (12), ..

arrive at the first non-vanishing equation which will

sequentially to see if they vanish. We

be of the form Ae”+B=0. In the worst case, they all
vanish and we have checked J"—H)Q(iﬂ)-—3
equations in which case the object curve is simply »

(Appendix A)
Ap™+ B=0 has the unique single positive root or none.

overlapping lines. The equation
In the latter case, the answer is ''mo’’ to the
correspondence problem. In the former case, the root
is the reconstruction key. The step 5 checks the

remaining —(Lﬂ)é(ﬂa——ul%iﬁ—l equations at the

reconstruction key. We required b,,,%0 which is
almost always true theoretically since in the space of
all coefficients the measure of the subspace defined
by b,00=0 is zero.

5. Experimental Results

In this section we show four experimental results,
two on cubic curves and two on quartic curves. The
first one on cubic is to check correctness of our
mathematical analysis, hence it is a synthetic curve.
We start with an object curve f given by a cuspidal
cubic in space, compute its stereo images £ and £.
We show how to reconstruct f from £ and £ using
our algorithm. This avoids measurement errors in the
image processing on real images. The second one
uses the real image of a 5.25 inch floppy diskette from
which we obtain a cubic by multiplying the central
circle by one of the edge line. This experiment is
about reconstruction for reducible (singular) curve.

For reconstruction for irreducible curve, we use a pair
of stereo images of postscript image of spiril curve.
Spiril curve is a quartic curve which is a section of
torus by plane parallel to the rotational axis. For
correspondence test, we take a pair of stereo images
with many coins (ie. conics) and by multiplying
conics we obtain many quartics. Our third experiment
is on these quartics.

5.1 Cuspidal Cubic

Our coordinate systems are as in the preceding
sections with the focal length 1. The object curve
under consideration is given as the intersection of the
cuspidal cylinder and the plane given as follows.

/e -y =0
' {—éx—Sy—z—Fd =0

The image curves are given by,

fi t =2 — w +100°+ 268 =0
{fz (= 2duy+ 10dv+ 2d)° — (uy — 100—-2)d** =
Assuming that f£,% are given without knowing f
in advance we want to show how to recover s using
the algorithm described in the proceeding section.
Computation shows the preprocessed coefficients a g

and b5, are

azgo=—2d azio=0 azo1=0
ﬂ120=—_3L a;1=0 a192=0
byoo=—84 by o=40 byo,=8d"
2
bx20=—200d3—% by n=—40d" by ,=—84
From equation (11),
(A% 10— A1 00%+ B 34— B% 1o = _—6%02*‘25""2%—(—5)2

1z 1y
g’ =) = 0

Hence p=—% > (0 (reconstruction key),

d=%, &=-5 dy=-1

Thus the plane = is given by —%—x1~5y—z=—d, and

hence F, is given by,

— 2P~y + 105°+ 22 = —2d*— 2y2(—é x~5y—2)
—24d(x*—~ %)
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Thus the original curve is the intersection of » and
F, and hence the original curve is completely
recovered.

5.2 Decomposable Cubic

We consider the cubic curve f consisting of a
conic ¢ and a line ¢/ that is, f=ilc. We proceed as
follows.

1. Make PostScript File.

2. Take stereo images using two identical cameras
( PULNIX TM-7CN line scan cameras with
focal length 16mm).

3. Find the best fit curves by minimizing their
algebraic distances.

4. Follow the stereo algorithm.

We tested on a 5.25 inch floppy diskette image in
figure 3. Our conic is the center circle and the line is
an edge. As before we use subscript s=1,2 to indicate
the image on the camera C,. The equations of lines
and conics are as follows.

5 ¢ 0.0563597 +1.31038x +y=0
L+ 0.131947+1.26278x+ y=0

¢+ —0.0560636 + 1.61007x —8.834442 x°
l ++0.0828622y— 0. 203743xy — 6. 541348 y* =0
Cy t

0.0101725 + 0.454067x — 8. 746502 x*
+0.142588y — 0.06565xy — 6.466102 y* = 0

The resulting cubics are

(a) Left Image

7]

o 2 3k 2eEle ¥A 57

(b) Right Image

Marked points are data points for fitting procedure

Fig. 3 Diskette Images

£+ —0.00315973 +0.0172785x + 1.60908
—11.642x° — 0.0513935y+ 1.70717xy
—9.15142::23;~0.285806y2
—8.77539x3° ~6.541348 * =0

fot 0.00134222+6.0727582x — 0.580683 x°
— 110449 2° +0.0289865 + 0. 625463y
—8.8294 %" y—0.710592 ¥*
—8.23094x 5" —6.4661025° =0

From equation (11), 0.177402—0.182601 o*=0. Hence

»=0.985661, and
d;=0.014339 d,=0.00820288 3=10.0629354

Computation shows the total error E=0.000171477.
‘We had placed the object plane parallel to the image
planes, that is, » is given by z=2z, and hence d4,=0
and e=1. Our experimental result shows that our
method is correct.

5.3 Spiril Curve

We show an experimental result with an
irreducible quartic curve. Our primitive curve is called
spiril curve [16] which is a section of torus by plane
parallel to the rotational axis. The implicit equation of

spiril curve is
(P + P+ &~ R =4d P + D).

We followed the procedure given in section 5.2,
Figure 4 shows images which are taken by CCD
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camera. We binarized the image with a certain

threshold and used all black pixels for fitting

procedure.

{ o \‘
; J
\\ e ’_'\\;%_.«/

(a) Left Image

// - S T - \\\

g \

\\\ N ,//

(b) Right Imnage

Spiril curve which is a section of torus by plane
parallel to the rotational axis.

Fig. 4 Peanut like Quartic Curve

The fitted quartics are

£ ~0.00150304 —0.00512004x + 1.55474 x% +29.6532
+137.630243 x* +0.022119y + 0.334202xy + 3.6193 2%y
+0.481874 x°y+0.768963 y* + 11.5783xy* + 108.517703 2% *
+0.940521 y° + 2.331289x° + 11897231 ' =0

£y ¢ —0.00043553 +0.0249506x — 0.648047 x* — 8.63508 x°
+137.286683 x* +0.0135216y — 0.101736xy+ 3.12007 x°y
—1.757671 2° y+0.491873 y° — 3.6673Lxy" + 108.900601 x*
+0.724412 3> — 0.299074x v* + 11.455089 »* =0

From equation (11), 0.132196—0.131411 p*=0 Hence,

p=1.00298, and
dy=—0.00298 d=—0.00407864 d3=-10.069748

(b) Right Image
Marked points are data points which are used in

curve-fitting procedure.

Fig. 5 Coins Image for Matching

Computation shows the total error E=0.00530749. We
had placed the object plane parallel to the image planes,
that is, = is given by z=2z, and hence ¢,=90 and o=1.
Our experimental result shows that our method is
correct.

5.4 Decomposable Quartic (Correspondence)

We test our matching constraints for a set of
decomposable quartics. See figure 5. In each image,

we number coins from 1 to 5 in anti-clockwise.
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Table 1 Matching Frrors
@
2 73 2% % B % 5 “ 5 %

22| 0.0000001 | 0.0000165 | 0.0002237 | 0.0005001 | 0.0000707 | 0.0001086 | 0.0003135 | 0.0007790 | 0.0012931 | 0.0019904
23 | 00000169 | 0.0000003 | 0.0003130 | 0.0006119 | 0.0000180 | 0.0001750 | 0.0004145 | 0.0008%51 | 0.0014037 | 00020816
24 | 00001635 | 0.0002749 | 0.0000004 | 0.0000678 | 0.0004190 | 0.0000174 | 0.0000190 | 0.0001623 | 0.0008992 | 0.0007751
25 | 00008906 | 00006635 | 0.0000483 | 0.0000001 | 0.0007451 | 0.0001141 | 0.0000177 | 0.0000343 | 0.0001679 | 0.0004320
dy | B | 00000648 | 00000125 | 0000408 | 00007151 | 0.0000002 | 0000255 | 0.0005103 | 0.0009991 | 0.0014940 | 0.0021429
3| 00000739 | 00001438 | 0.0000185 | 0.0001089 | 0.0002510 | 00000008 | 0.0000400 | 0.0002238 | 0.0004729 | 0.0008458
B | 00002367 | 00003603 | 0.0000192 | 0.0000143 | 00005068 | 0.0000488 | 0.0000005 | 0.0000682 | 0.0002253 | 0.0004987
44 | 00006369 | 00007070 | 0.0001360 | 0.0000308 | 0.0009004 | 0.0002278 | 0.0000833 | 0.0000005 | 0.000034 | 0.0001654
45| 00008363 | 00010978 | 00008334 | 00001462 | 0:0013324 | 00004712 | 00002463 | 0.0000554 | 00000002 | (B0000ETT
55 | 00013237 | 0.001570 | 0.0006145 | 0000342 | 00018477 | 0.0007881 | 0.0004966 | 00001979 | 00000534 | 0.0000003

Denote ¢! (¢)) for i~th conic in left (right) image. To
test the performance of our matching algorithm, we
make a quartic ¢% (¢%) by multiplying ¢ and ¢ (¢f
and ¢f). In table 1, 4 means 4% (or ¢%). Diagonal
entires are rer;)arkably less than off-diagonal ones.
This means that diagonal entries are correctly

matched.

6. Concluding Remarks

We presented an algorithm for closed form
solutions to the problems of correspondence and
reconstruction of a planar algebraic curve in space.
We derived our algorithm based on simple obser~
vation using elementary algebra in contrast to the
past works using the elimination theory of algebraic
geometry solving a system of multivariate polynomial
equations. However in order to use our algorithm the
image polynomials are required to satisfy certain
non-vanishing condition. This in not a serious
obstacle since the exact probability of satisfying the
requirement is 1. There is another method which can
overcome this problem[10]. One other restriction was
that we worked with non-convergent stereo system,
but this is a trivial simplification since data on any
stereo system can be easily converted into such a
system by simple computations. We have not
looked

stability and robustness of our algorithm which

seriously into the problem of numerical

requires further research in the future. It should be
also interesting to investigate projective analog of our

methods.
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A. Vanishing of the equations

We have three quadratic equations in p (10), (11), (12).
If all these equations vanish then we obtain the following
identities.

Auzz0= A% 110

w211 = Au-110 Au-r01
A0z = Azn—lol
B, 239 = B4 10
Baz211 = Bs110 Ba-rg:
B, 202 = Boy-101

By equation (8),

go(%)Bn s+a3-po(— dn)?
By-330=3Br220d373B Hudz d
Bo-330=3B% ) 1 0deT 3B,y 1 odi—
Bagso—Basy 10+ (B 10— dp)*
Baczso— B 10t Al 106”

3
P°A 330 =

I

[

0 Auz0r = ?.: ( )( ) westhrr2-g 1=y (—d)X—dy)”
ﬁ Baziar-p1 (—d)? ‘d:l;(/zg)Bn—Z-‘-ﬂzfﬁﬂ (—dyp)*

f

228 A 27 A A1 EQ0001)

=Bugz1=Basiio Baro1t ZQ(Z)BZn:‘?lo Bayo(—dp)f

_d:s;o(lzg} BIi o~ d)*
=B 321=Bai10 Baci014+Bacio) (Au010)?
—(Bn—lul_An—lGlp)(An—\\Gp)z

_ 2 3
=Bys21 Boiio Bayort Aot Avgio e

ﬁ07 u B grarri-p2-r (—d)(~dy)”
7--0( )B" arr1a—y (= d)7= dzﬁ:(z)B"—znu 7-r (= ds)7

PaAn—axz =

= B, 312 BY 0 Bariot z:“(%)Bi:Iu 1By ol —dy)”

~a 5 (Y B )

=B, 31278, Dan~l 01+ Buy1o(An-1y W)
—(Bayro=Aai oAy m)z

= B,3127B,-110 n~1nl+A2n—101 Ay 101"3

PPA 305 = gn(i)Bn—shswo (=dy)
= B, 303—3Byz0z2 @3+3B,1 ¢, di—dj
= B,303=3B% 101 d3+3B 1o, -}
= B, 393= Byt (B,yy,—dp

B+ A% 101 6

= Ba-303—
So, we have four cubic equations in p with real
coefficients. Since the cubic equation is of the form
Ap*+ B=0, the number of (real) solutions is always one
in general.

In this way we can prove the following.
Claim If the equations obtained from comparing the
coefficients of z; /~#/z* vanish for j+# < /—1 for some

{, then

i k
Alniio Akn~101
]
Byi110 Ba-101

Aijk =
Bijs =
forj+k < !

Proof We use the mathematical induction on £ If [ < 2,
the statement is true.

Assume the statement holds for /-1 = 2,
equation (8),

then by the

PAL = 20({3)(“!12)‘9[ ﬁ(f)Bn t+aer - k-y (—dg)’]
= gl(g)(—d")ﬂ[ gO(I;)B" travyi-gaey (= d)']
+ 72:0(];)3" ey iy (—d3)7
= =I(I§)(“dz)ﬁ[ ga(f) 1B Tor (—dpN
+ gl(i)B{l~]lb Biloy (—dy)"+Basss
= ;(1)( &Y BTS WA 0 0*
+B,- g (A%-1100 *Bn«xoﬂ‘*'Bn 1ik
= A 101P [A%,_ Ill)p Bn 1o1]
+Bn 110 LAY 110 ot~ B4 101]+Bn Lik
= At 1 0Ak-1010' ¥ Byt i s— By 10Bhi0n
Hence

(A, Al 0AR 0D P’=(Bn—/j/e—3i~1 LoBEL ) (14)
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From the vanishing condition, we get the following
identities.

_ i 3
Aje= A1 04% 101
-5 P’
Bijr = Ba110Bu-101

This completes the proof.(]

Proof of (Lemma 3) By equation (14) in the proof of
Claim, if all the equations in p

of degree less than / vanish then all the polynomials of
degree [ are given by equation (14).

Hence the first non-vanishing polynomial is of the form
Ap'+B=0._]

Additionally, note that if all the equations vanish, then
n i
fi: i+;§«=n(i ; k)bukxl}"
=bn00i+]%=n(i;?k)Aijlz 2y’

=bnny x'+1§=n( i ;lk>Ain—l 1 DAkn—l 01 x;yl
=buog (M+A, 1 oy+A.0)”

b Bl e
=auvo B i o) Bioe Y
=anoo H_]%:”(i;lk)Bjn-l 1 OBkn—l 01 xéyj
=8n00 (X2+By-119ytBu-y0 )"

So, image curves £, and f£, are lines and the viewing
cones C, and C, are planes. The plane = is any plane
containing the intersection line of planes C, and C,. Note
that in this case the object curve is a line. Though the
number of possible planes is infinite, the possible object
curve is uniquely determined as the intersection line of
two planes C, and C,.
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