• Title/Summary/Keyword: system efficiency

Search Result 20,046, Processing Time 0.043 seconds

Efficiency analysis of the boost converter for compact solar array system (소형 태양광 시스템 부스트 컨버터의 효율 분석)

  • Lee, Kook-Sun;Choy, Ick;Choi, Ju-Yeop;An, Jin-Ung;Lee, Dong-Ha
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.388-393
    • /
    • 2009
  • It is important to know character about efficiency of converters before manufacturing it. Recently, various techniques are developed for solar array system. Converters can be used for control of solar array's condition. So, solar array with converter structures are very useful. If we want to measure converter's efficiency after manufacturing it. It's not difficult if we have measuring equipment. But we need to measure efficiency before realization converters for development of optimized efficiency and simulations. This research offers an efficiency calculation of single phase hard switching boost converter. And it is the most basic type of converters. In fact, it can be used techniques for getting higher efficiency like soft-switching and more. But the cost is an important issue in compact solar array system. One way to escape from the cost problem is finding optimized efficiency of basic types of convener.

  • PDF

Energy Efficiency Evaluation of IT based Ship Energy Saving System-(2) : Ship Test Results (IT기반의 선박에너지절감시스템 성능평가 방법-(2) : 해상시험 수행 결과)

  • Yoo, Yun-Ja
    • Journal of Navigation and Port Research
    • /
    • v.40 no.4
    • /
    • pp.165-171
    • /
    • 2016
  • SEEMP (Ship Energy Efficiency Management Plan) has entered into force since 2013 for the reduction of GHG emission of operating ships. SEEMP guidelines include the hardware modification or installation of energy-saving device on ship. It also includes software based energy-saving technology such as optimum routing, speed optimization, etc. Hardware based technologies are not easy to apply to ongoing vessel due to the operational restriction. Therefore, IT based energy-saving technology was applied and its energy efficiency was evaluated using before and after energy-saving system applied voyage data. SEEMP advises a voluntary participation of EEOI (Ship Energy Efficiency Operation Indicator) use as an indicator of ship energy efficiency operation, and those results were also shown to evaluate the improvement efficiency of energy-saving system.

The Efficiency Prediction for Plate Type Steam Reformer with Shape Change of Combustion Chamber (평판형 STR의 연소공간 형상변화에 따른 성능 예측)

  • Kim, Hun-Ju;Lee, Ji-Hong;Lee, Myeong-Yong;Lee, Sang-Seok;Lee, Do-Hyung
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.4
    • /
    • pp.286-294
    • /
    • 2010
  • According to the propagation of fuel cell system, the importance of that system efficiency is being magnified. Thus, the efficiency improvement of reformer which is the important part of fuel cell system will be required. In structural aspect, the reformer is classified into cylindrical and plate type. Plate type reformer features better maintenance and space efficiency compared with cylindrical type. In this study, we changed the shape of combustion chamber to improve the reforming efficiency. And then we performed the CFD simulation to predict the spacial distribution of temperature. Analysis cased contains with baffles, fins, baffles and fins, and without those. In case of only with-baffle, temperature distributions were uneven because the high temperature stream was concentrated near the baffle end. In case of with-fin, the temperature distributions were relatively even than other cases.

A Simulation based Study on the Economical Operating Strategies for a Residential Fuel Cell System (시뮬레이션 기반 가정용 연료전지 시스템의 경제적 운전전략에 관한 연구)

  • Hwang, Su-Young;Kim, Min-Jin;Lee, Jin-Ho;Lee, Won-Yong
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.2
    • /
    • pp.104-115
    • /
    • 2009
  • In case of residential fuel cell system, it is significant to stably supply heat and power to a house with high efficiency and low cost for the successful commercialization. In this paper, the control strategy analysis has been performed to minimize the total cost including capital and operating cost of the residential fuel cell system. The proposed analysis methodology is based on the simulator including the efficiency models as well as the cost data for fuel cell components. The load control strategy is the key factor to decide the system efficiency and thus the cost analysis is performed when the fuel cell system is operated for several different load control logics. Additionally, annual efficiency of the system based on the seasonal load data is calculated since system efficiency is changeable according to the electric and heat demand change. As a result, the hybrid load control combined electricity oriented control and heat oriented control has the most economical operation.

A study on Applicable to Advanced treatment of using Side Stream Plug-Flow Reactor (효과적 공간활용을 위한 Side Stream Plug-Flow Reactor를 이용한 하수 고도처리 공정 적용에 관한 연구)

  • Kim, samju;Hyun, InHwan;Dockko, Suk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.367-372
    • /
    • 2008
  • This study configured the conventional $A^2O$ (Anaerobic-Anoxic-Aerobic bioreactor) system which the fixed media immersed into the anoxic reactor(Named PFR system : Plug Flow Reactor) for evaluating the removal efficiency of nitrogen in the wastewater. The experimental equipment was a cylinder which was consist of 4 pleated PE Pipes(Length 330M, Diameter 100mm) including 2 rope shape media. As a result, the average effluent T-N removal efficiency of the conventional $A^2O$ system was 17.9, 40.3, 50.6, 44.6% in each mode, but the average effluent T-N removal efficiency of the PFR system could achieve 38.8, 57.1, 71.8, 65.4% in each mode. It indicated that the PFR system caused to the increasing of C/N ratio that effected to the increasing of the denitrification efficiency. Not only the effective T-N removal efficiency but also the controllable install space will give advantages for retrofitting of the wastewater treatment plant with the conventional treatment system to the PFR system.

A Study on the Influence of the Packaging System-related Institutional Approach on Logistics Efficiency (Focusing on Retail Ready Packaging System)

  • Jung, Sung-Tae
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.26 no.3
    • /
    • pp.155-163
    • /
    • 2020
  • This paper conducted a study on the operation plan of the packaging system to enhance the logistics efficiency between the manufacturer and the distributor, whose prior research in the relevant field was insignificant. By identifying problems and improvements in the operation of the packaging system between domestic manufacturers and distributors through the Retail Ready Packaging. The institutional aspects were investigated to confirm that the mediation role of government and social organizations was required to resolve issues (χ2 = 148.916, p < 0.001), and that guidelines that gathered diverse opinions for the rational operation of the packaging system were essential, while institutional aspects are needed to be supplemented to be willing to improve logistics efficiency (χ2 = 95.781, p < 0.001). In this study, even though the difference in perception between manufacturers and distributors is clear and the issue related to the operation of the packaging system is ongoing, if there is no effort to grasp the issue, the opinions between manufacturers and distributors will be left at odds and could become a social problem. Unnecessary interference from government and social organizations should be excluded, but the level of mediation to support win-win management in order to promote logistics standardization and reduce CO2 and national logistics costs can be explained as a catalyst for improving logistics efficiency through reasonable operation of the packaging system.

The Basic Study on Economic Evaluation of Distributed Energy System Installed in Hospital (병원건물 분산에너지시스템 도입에 따른 경제성분석)

  • Hong, Won-Pyo;Kim, Hyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1136_1138
    • /
    • 2009
  • This paper gives a basic Energy performance data of micro gas turbine and Renewable Energy(BIPV and Solar Collector System) installed in Hospital Building. The efficiency of solar collector and BIPV system was 30%, 10% individually, and lower than micro gas turbines. Micro gas turbines are small gas turbines that burn gaseous and liquid fuels to produce a high-energy exhaust gas and to generate the electrical power. Recently the size range for micro gas turbines is form 30 to 500kW and power-only generation or in combined heat and power(CHP) systems. If micro gas turbine was operated only for electric energy, the efficiency was about 30%, but for combined heat and power, the efficiency was about 90%. Finally, installed in large hospital, Micro gas turbine system was operated to CHP mode, was high-efficiency system than Solar collector and BIPV system.

  • PDF

New Analysis Method for Wireless Power Transfer System with Multiple n Resonators

  • Kim, Ju-Hui;Park, Byung-Chul;Lee, Jeong-Hae
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.3
    • /
    • pp.173-177
    • /
    • 2013
  • This paper presents a new method for analyzing the maximum efficiency of a wireless power transfer (WPT) system with multiple n resonators. The method is based on ABCD matrices and allows transformation of the WPT system with multiple n resonators into a single two-port network system. The general maximum efficiency equation of a WPT system with multiple n resonators is derived using the ABCD matrix. Use of this equation allows placement of the relay resonators for maximum efficiency even though they are asymmetrical. The general maximum efficiency equation and the method of the optimum placement are verified by a full wave simulation. The results show that the method is useful for the analysis of a WPT system with relay resonators.

Performance Evaluation of Automatic Self-Cleaning Filter System using Twin-Fluid Nozzles for Air Cleaning in the Subway Stations (지하철 공기청정을 위한 2유체노즐형 자동세정 공기청정 시스템 개발에 관한 연구)

  • Ahn, Y.C.;Lee, J.K.
    • Journal of ILASS-Korea
    • /
    • v.9 no.3
    • /
    • pp.15-21
    • /
    • 2004
  • The removal of the dusts in the subway stations, tunnels, factories and buildings becomes issue for comfortable indoor and outdoor conditions. There has been used an automatic self-cleaning filter system to collect the dusts. In general, the collected particles are removed by water spray nozzles. The new design for improving the cleaning efficiency of collected dusts and reducing the supplied water is the concept of the plane array of demister filters and the twin-fluid nozzle for mixing compressed air and water in the automatic self-cleaning filter system. Results show that the cleaning efficiency of twin-nozzle filter systems is 99.1%, compared to 47% in the conventional filter system. Therefore the automatic self-cleaning filter system using twin-fluid nozzle filter systems reduces water supplied in the filter system, and increases cleaning efficiency and drying efficiency.

  • PDF

The Basic Study on Economic Evaluation of Micro-turbine and Alternative Energy system Installed in Hospital (병원건물의 마이크로터빈과 신재생에너지도입에 따른 경제성평가 기초연구)

  • Kim, Byoung-Soo;Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.439-444
    • /
    • 2009
  • This paper gives a basic Energy performance data of micro gas turbine and Renewable Energy(BIPV and Solar Collector System) installed in Hospital Building. The efficiency of. solar collector and BIPV system was 30%, 10% individually, and lower than micro gas turbines. Micro gas turbines are small gas turbines that bum gaseous and liquid fuels to produce a high-energy exhaust gas and to generate the electrical power. Recently the size range for micro gas turbines is form 30 to 500kW and power-only generation or in combined heat and power(CHP) systems. If micro gas turbine was operated only for electric energy, the efficiency was about 30%, but for combined heat and power, the efficiency was about 90%. Finally, installed in large hospital, Micro gas turbine system was operated to CHP mode, was high-efficiency system than Solar collector and BIPV system.

  • PDF