• Title/Summary/Keyword: synthetic temperature

Search Result 808, Processing Time 0.033 seconds

Effects of Experimental Variables on the Measurement $T_{cv}$ of Crystalline slags (결정슬래그의 $T_{cv}$ 측정 시 실험변수에 따른 영향)

  • Kim, Yu-Na;Oh, Myong-Sook S.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.254-257
    • /
    • 2008
  • For crystalline slags, of which the viscosity rapidly increases at $T_{cv}$ due to the formation of crystalline phases, the Tcv is affected by measurement conditions. In this study, we investigated the effect of cooling rate, and alumina dissolution on the determination of $T_{cv}$. Using synthetic slag samples based on the composition of Alaska Usibelli slag, $T_{cv}$ were determined under a constant cooling rate of $2^{\circ}C$/min, and under rapid cooling with holding time to allow the slag to reach thermal and rheological equilibrium. The effect of alumina dissolution was investigated using platinum lined crucibles. The constant cooling resulted in lower $T_{cv}$ by $33^{\circ}C$ as compared to the equilibrium measurements. Under $2^{\circ}C$/min cooling, the blocking alumina dissolution resulted in lower $T_{cv}$ by $23^{\circ}C$. When the $T_{cv}$ was measured under $2^{\circ}C$/min cooling using an alumina crucible, therefore, the effects of a constant cooling is somewhat offset by the alumina dissolution effect, and bring the measured value closer to the true value.

  • PDF

Occurrences and Phase Stability Relations of Minerals of the Cu-Fe-Sn-S System (Cu-Fe-Sn-S계(系) 광물(鑛物)의 산출상태(産出狀態)와 상안정관계(相安定關係))

  • Lee, Min Sung
    • Economic and Environmental Geology
    • /
    • v.13 no.4
    • /
    • pp.205-213
    • /
    • 1980
  • Stannite is mainly found in hypothermal ore deposits, whereas mawsonite and stannoidite occur characteristically with bornite and chalcopyrite in subvolcanic (xenothermal) ore deposits. Mawsonite always shows the replacement on the rims of stannoidite grains or along the grain boundaries of stannoidite, bornite and chalcopyrite. In the Tada mine, Japan, the following mineral assemblages of the Cu-Fe-Sn-S minerals were observed. 1) bornite-stannoidite; 2) stannoidite-chalcopyrite; 3) stannite-chalcopyrite; 4) bornite-mawsonite-stannoidite; 5) bornite-stannoidite-chalcopyrite; 6) mawsonite-stannoidite-chalcopyrite; 7) stannoidite-stannite-chalcopyrite; 8) bornite-mawsonite-stannoidite-chalcopyrite The heating and D.T.A. experimental results indicate that natural stannoidite containing 3 weight percent of zinc decomposes to bornite, stannite and chalcopyrite at above $500^{\circ}C$, whereas zinc-free synthetic stannoidite is stable up to $800^{\circ}C$. The stability temperature of zincian stannoidite depends on the zinc content. Mawsonite is stable at temperatures below $390^{\circ}C$ and decomposed to stannoidite, bornite and chalcopyrite above it. According to the sulfur fugacity determination by the electrum tarnish method the univariant assemblage of mawsonite, bornite, stannoidite and chalcopyrite requires a higher sulfur fugacity than that of bornite, stannoidite and chalcopyrite assemblage.

  • PDF

The Physicochemical Characteristics of PET Fabrics Treated with Low Temperature Glow Plasma and Atmospheric Corona Discharge (진공 저온 플라즈마와 대기압 코로나 방전가공 PET 직물의 물리화학적 특성)

  • Ma, Jaehyuk;Yang, Jinyoung;Koo, Kang;Yang, Hyun A;Park, Youngmi
    • Textile Coloration and Finishing
    • /
    • v.26 no.3
    • /
    • pp.201-208
    • /
    • 2014
  • The high value-added functionality for synthetic fiber can be considered through a plasma enhanced treatment. In this study, PET(Polyethyleneterephthalate) was treated with a glow plasma and corona treatment. Surface characteristics of treated fabric were investigated using electron scanning microscopy(SEM), contact angle, X-ray photoelectron spectroscopy(XPS), tensile and adhesion strength. It was found that the contact angle showed $85.5^{\circ}$ for untreated fabric, $0^{\circ}$ for plasma and corona treatment at the condition of 200W for 7min. By XPS analysis, atomic ratio of O 1s/C 1s was increased from 0.27 to 0.43 by glow plasma and 0.27 to 0.41 by corona treatment at 200W for 7min, respectively. Glow plasma and corona treatment did not significantly change the tensile strength of PET fabric. Adhesion strength showed a substantial enhancement for the surface treated with the glow plasma, while corona treatment was adversely affected.

Synthesis and Properties of Partially Hydrolyzed Acrylonitrile-co-Acrylamide Superabsorbent Hydrogel

  • Pourjavadi, Ali;Hosseinzadeh, Hossein
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3163-3172
    • /
    • 2010
  • In this work, a novel method to synthesis of an acrylic superabsorbent hydrogel was reported. In the two stage hydrogel synthesis, first copolymerization reaction of acrylonitrile (AN) and acrylamide (AM) monomers using ammonium persulfate (APS) as a free radical initiator was performed. In the second stage, the resulted copolymer was hydrolyzed to produce carboxamide and carboxylate groups followed by in situ crosslinking of the polyacrylonitrile chains. The results from FTIR spectroscopy and the dark red-yellow color change show that the copolymerization, alkaline hydrolysis and crosslinking reactions have been do take place. Scanning electron microscopy (SEM) verifies that the synthesized hydrogels have a porous structure. The results of Brunauer-Emmett-Teller (BET) analysis showed that the average pore diameter of the synthesized hydrogel was 13.9 nm. The synthetic parameters affecting on swelling capacity of the hydrogel, such as AM/AN weight ratio and hydrolysis time and temperature, were systematically optimized to achieve maximum swelling capacity (330 g/g). The swollen gel strength of the synthesized hydrogels was evaluated via viscoelastic measurements. The results indicated that superabsorbent polymers with high water absorbency were accompanied by low gel strength. The swelling of superabsorbent hydrogels was also measured in various solutions with pH values ranging from 1 to 13. Also, the pH reversibility and on-off switching behavior makes the hydrogel as a good candidate for controlled delivery of bioactive agents. Finally, the swelling of synthesized hydrogels with various particle sizes obey second order kinetics.

PERSPECTIVES OF NUCLEAR HEAT AND HYDROGEN

  • Lee, Won-Jae;Kim, Yong-Wan;Chang, Jong-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.413-426
    • /
    • 2009
  • Nuclear energy plays an important role in world energy production by supplying 6% of the world's current total electricity production. However, 86% of the energy consumed worldwide to produce industrial process heat, to generate electricity and to power the transportation sector still originates in fossil fuels. To cope with dwindling fossil fuels and climate change, it is clear that a clean alternative energy that can replace fossil fuels in these sectors is urgently required. Clean hydrogen energy is one such alternative. Clean hydrogen can play an important role not only in synthetic fuel production but also through powering fuel cells in the anticipated hydrogen economy. With the introduction of the high temperature gas-cooled reactor (HTGR) that can produce nuclear heat up to $950^{\circ}C$ without greenhouse gas emissions, nuclear power is poised to broaden its mission beyond electricity generation to the provision of nuclear process heat and the massive production of hydrogen. In this paper, the features and potential of the HTGR as the energy source of the future are addressed. Perspectives on nuclear heat and hydrogen applications using the HTGR are discussed.

Synthesis of Polyols Based on Castor Oil with Maleic Anhydride and Aminoalcohol Derivatives for Polyurethanes (폴리우레탄 제조를 위한 무수말레산과 아미노알콜을 이용한 피마자유 기반의 폴리올 합성)

  • Jung, Sung-Gil;Jeong, Jae-Hyeok;Kim, Sang-Wook;Kwon, O-Pil
    • Clean Technology
    • /
    • v.17 no.3
    • /
    • pp.238-243
    • /
    • 2011
  • We investigate new polyols based on castor oil for polyurethane. In order to introduce primary alcohol groups, which exhibit higher reactivity with isocyanate than secondary alcohol groups, the secondary alcohol groups on castor oil were modified with maleic anhydride and aminoalcohol derivatives ($H_2N$-R-OH). The reactions with various molar ratio of castor oil and maleic anhydride were done at relatively low reaction temperature in the absence of catalyst. The polyols based on castor oil with flexible side-chains exhibit better miscibility with conventional synthetic polyols.

Controlled Growth of Large-Area Mono-, Bi-, and Few-Layer Graphene by Chemical Vapor Deposition on Polycrystalline Copper Surfaces

  • Kim, Yooseok;Song, Wooseok;Lee, Suil;Cha, Myoung-Jun;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.614-614
    • /
    • 2013
  • The effect of graphene growth parameters on the number of graphene layers were systematically studied and growth mechanism on copper substrate was proposed. Parameters that could affect the thickness of graphene growth include the pressure in the system, gas flow rate, growth pressure, growth temperature, and cooling rate. We hypothesis that the partial pressure of both the carbon sources and hydrogen gas in the growth process, which is set by the total pressure and the mole fraction of the feedstock, could be the factor that controls the thickness of the graphene. A synthetic method to produce such large area graphene films with precise thickness from mono- to few-layer would be ideal for chemists and physicists to explore the promising electronic applications of these materials. Here, large-area uniform mono-, bi-, and few-layer graphene films were successfully synthesized on copper surface in selective growth windows, with a finely tuned total pressure and $CH_4$/$H_{2gas}$ ratio. Our findings may facilitate both the large-area synthesis of well-controlled graphene features and wide range of applications of graphene.

  • PDF

The effect of thermodynamic stability of casting solution on the membrane inversion process morphology and permeation properties in phase inversion process

  • Kim, Jeong-Hoon;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.04a
    • /
    • pp.26-27
    • /
    • 1995
  • Most of synthetic polymeric membranes used in ultrafiltration, reverse osmosis and microfiltration processes are prepared by phase inversion(or phase separation) technique. In this technique, a homogeneous polymer solution is cast into thin film or hollow fiber shape and then immersed into a nonsolvent coagulant bath. The exchange of solvent and nonsolvent across the interface between casting solution and coagu!ant can make the casting solution phase-separate and form a membrane with a symmetric or asymmetric structure. Because of importance of this technique in membrane field, many investigations have been dedicated to elucidate the mechanism of membrane formation by phase inversion technique.[1-10] These investigation have suggested that the structure formation and permeation properties of phase inversion membrane depend on the variables such as the nature and content of casting solution and coagulant, temperature of casting solution and coagulant, and the diffusional exchange rate of solvent and nonsolvent etc. which can be related to the thermodynamic and kinetic properties of the casting system. The variables such as the nature and content of casting solution can also be the important factor affecting the structure formation and permeation property of the phase inversion membrane.

  • PDF

A Specific Short Dextrin-Hydrolyzing Extracellular Glucosidase from the Thermophilic Fungus Themoascus aurantiacus 179-5

  • Carvalho Ana Flavia Azevedo;Goncalves Aline Zorzetto;Silva Roberto da;Gomes Eleni
    • Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.276-283
    • /
    • 2006
  • The thermophilic fungus Thermoascus aurantiacus 179-5 produced large quantities of a glucosidase which preferentially hydrolyzed maltose over starch. Enzyme production was high in submerged fermentation, with a maximal activity of 30 U/ml after 336 h of fermentation. In solid-state fermentation, the activity of the enzyme was 22 U/ml at 144 h in medium containing wheat bran and 5.8 U/ml at 48 h when cassava pulp was used as the culture medium. The enzyme was specific for maltose, very slowly hydrolyzed starch, dextrins (2-7G) and the synthetic substrate (${\alpha}$-PNPG), and did not hydrolyze sucrose. These properties suggest that the enzyme is a type II ${\alpha}$-glucosidase. The optimum temperature of the enzyme was $70^{\circ}C$. In addition, the enzyme was highly thermostable (100% stability for 10 h at $60^{\circ}C$ and a half-life of 15 min at $80^{\circ}C$), and stable within a wide pH range.

Thermal Pointing Error Analysis of Satellite (인공위성 열지향오차 해석)

  • Kim, Seon-Won;Kim, Jin-Hui;Lee, Jang-Jun;Hwang, Do-Sun
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.1
    • /
    • pp.21-26
    • /
    • 2007
  • LEO Satellite that observes earth with optical camera or synthetic aperture radar is placed at hundreds of kilometers altitude and undergoes severe thermal load. The thermal deformation of structure by the thermal load makes payload not to point toward wanted ground position. The payload pointing direction change by thermal distortion is called thermal pointing error. This is carried out by 3 steps that are thermal analysis, temperature conversion and structural analysis. In this paper, the possibility of successful mission through thermal pointing error analysis is described.

  • PDF