DOI QR코드

DOI QR Code

Synthesis of Polyols Based on Castor Oil with Maleic Anhydride and Aminoalcohol Derivatives for Polyurethanes

폴리우레탄 제조를 위한 무수말레산과 아미노알콜을 이용한 피마자유 기반의 폴리올 합성

  • Jung, Sung-Gil (Department of Molecular Science and Technology, Ajou University) ;
  • Jeong, Jae-Hyeok (Department of Molecular Science and Technology, Ajou University) ;
  • Kim, Sang-Wook (Department of Molecular Science and Technology, Ajou University) ;
  • Kwon, O-Pil (Department of Molecular Science and Technology, Ajou University)
  • 정성길 (아주대학교 분자과학기술학과) ;
  • 정재혁 (아주대학교 분자과학기술학과) ;
  • 김상욱 (아주대학교 분자과학기술학과) ;
  • 권오필 (아주대학교 분자과학기술학과)
  • Received : 2011.07.14
  • Accepted : 2011.09.16
  • Published : 2011.09.30

Abstract

We investigate new polyols based on castor oil for polyurethane. In order to introduce primary alcohol groups, which exhibit higher reactivity with isocyanate than secondary alcohol groups, the secondary alcohol groups on castor oil were modified with maleic anhydride and aminoalcohol derivatives ($H_2N$-R-OH). The reactions with various molar ratio of castor oil and maleic anhydride were done at relatively low reaction temperature in the absence of catalyst. The polyols based on castor oil with flexible side-chains exhibit better miscibility with conventional synthetic polyols.

본 연구에서는 폴리우레탄을 위한 친환경 폴리올 합성을 위하여 피마자유 기반의 폴리올을 합성하였다. 피마자유의 2차 알콜에 다른 촉매 없이 무수말레산을 이용하여 카르복실기를 도입하고, 이를 1차 알콜로 전환하기 위하여 아미노알콜($H_2N$-R-OH) 유도체를 반응시켜 친환경 폴리올을 제조하였다. 다양한 비율의 피마자유와 무수말레산의 반응이 시험 되었으며, 전체 반응은 상대적으로 낮은 공정온도와 무촉매 반응을 기반으로 수행되었다. 긴 곁가지가 도입되어 유동성을 가지고 있는 피마자유 기반의 천연폴리올이 기존의 합성폴리올과 가장 우수한 상용성을 나타내었다.

Keywords

References

  1. Steven, M. P., Polymer Chemistry an Introduction, 3rd ed., Oxford University Press, Oxford New York, Chap 13, 364-394 (1999).
  2. Zia, K. M., Bhatti, H. N., and Bhatti, I, A., "Methods for Polyurethane and Polyurethane Composites, Recycling and Recovery: A Review," React. Funct. Polym., 67(8), 675-692 (2007). https://doi.org/10.1016/j.reactfunctpolym.2007.05.004
  3. Lim, H., Park, I. J., Lee, S. B., and Lee, Y., "Synthesis of Fluorine-Containing Water-Soluble Polyurethane with Environmental Affinity," Clean Technology, 5(2), 37-44 (1999).
  4. Petrovic, Z. S., "Polyurethanes from Vegetable Oils," Polym. Rev., 48(1), 109-155 (2008). https://doi.org/10.1080/15583720701834224
  5. Kong, X., and Narine, S. S., "Physical Properties of Polyurethane Plastic Sheets Produced from Polyols from Canola Oil," Biomacromolecules, 8(7), 2203-2209 (2007). https://doi.org/10.1021/bm070016i
  6. Kong, X., Yue, J., and Narine, S. S., "Physical Properties of Canola Oil Based Polyurethane Networks," Biomacromolecules, 8(11), 3584-3589 (2007). https://doi.org/10.1021/bm0704018
  7. Zlatanic, Z., Laba, C., Zhang, W., and Petrovic, Z. S., "Effect of Structure on Properties of Polyols and Polyurethanes Based on Different Vegetable Oils," J. Polym. Sci. Part B: Polym. Phys., 42(5), 809-819 (2004). https://doi.org/10.1002/polb.10737
  8. Lu, Y., and Larock, R. C., "Soybean-Oil-Based Waterborne Polyurethane Dispersions: Effects of Polyol Functionality and Hard Segment Content on Properties," Biomacromolecules, 9(11), 3332-3340 (2008). https://doi.org/10.1021/bm801030g
  9. Kiatsimkul, P., Suppes, G. J., Hseih, F., Lozada, Z., and Tu, U. C., "Preparation of High Hydroxyl Equivalent Weight Polyols from Vegetable Oils," Ind. Crop. Prod., 27(3), 257- 264 (2008). https://doi.org/10.1016/j.indcrop.2007.09.006
  10. Jalilian, M., Yeganeh, H., and Haghighi, M., "Synthesis and Properties of Polyurethane Networks Derived from New Soybean Oil-based Polyol and a Bulky Blocked Polyisocyanate," Polym. Int., 52(12), 1385-1394 (2008).
  11. Lubguban, A. A., Tu, Y.-C., Lozada, Z. R., Hseih, F.-H., and Suppes, G. J., "Functionalization via Glycerol Transesterification of Polymerized Soybean Oil," J. Appl. Polym. Sci., 112(1), 19-27 (2009). https://doi.org/10.1002/app.29382
  12. Campanella, A., Bonnaillie, L. M., and Wool, R. P., "Polyurethane Foams from Soyoil-Based Polyols," J. Appl. Polym. Sci., 112(4), 2567-2578 (2009). https://doi.org/10.1002/app.29898
  13. Meyer, P., Techaphattana, N., Manundawee, S., Sangkeaw, S., Junlakan W., and Tongurai C., "Epoxidation of Soybean Oil and Jatropha Oil," Thammasat Int .J. Sc. Tech., 13, 1-5 (2008).
  14. Monteavaro, L. L., da Silva, E. O., Costa, A. P. O., Samios, D., Gerbase, A. E., and Petzhold, C. L., "Polyurethane Networks from Formiated Soy Polyols: Synthesis and Mechanical Characterization," J. Am. Oil Chem. Soc., 82(5), 365-371 (2005). https://doi.org/10.1007/s11746-005-1079-0
  15. Campanella, A., Baltanas, M. A., Capel-Sanchez, M. C., Campos-Martin, J. M., and Fierro, J. L. G., "Soybean Oil Epoxidation with Hydrogen Peroxide using an Amorphous Ti/ $SiO_2$ Catalyst," Green Chem., 6, 330-334(2004). https://doi.org/10.1039/b404975f
  16. Wang, H. J., Rong, M. Z., Zhang, M. Q., Hu, J., Chen, H. W., and Czigany, T., "Biodegradable Foam Plastics Based on Castor Oil," Biomacromolecules, 9(2), 615-623 (2008). https://doi.org/10.1021/bm7009152
  17. Ogunniyi, D. S., "Castor Oil: A Vital Industrial Raw Material," Bioresource. Technol., 97(9), 1086-1091 (2006). https://doi.org/10.1016/j.biortech.2005.03.028
  18. Gao, C. H., Xu, X. M., Ni, J. N., Lin, W. W., and Zheng, Q., "Effects of Castor Oil, Glycol Semi-Ester, and Polymer Concentration on the Properties of Waterborne Polyurethane Dispersions," Polym. Eng. Sci., 49(1), 162-167 (2009). https://doi.org/10.1002/pen.21235
  19. Athawale, V., and Kolekar, S., "Interpenetrating Polymer Networks Based on Polyol Modified Castor Oil Polyurethane and Polymethyl Methacrylate," Eur. Polym. J., 34(10), 1447-1451 (1998). https://doi.org/10.1016/S0014-3057(97)00282-6
  20. Narine, S. S., Kong, X., Bouzidi, L., and Sporns, P., "Physical Properties of Polyurethanes Produced from Polyols from Seed Oils: II. Foams," J. Am. Oil Chem. Soc., 84(1), 65-72 (2006).
  21. Yeganeh, H., and Hojati-Talemi, P., "Preparation and Properties of Novel Biodegradable Polyurethane Networks Based on Castor Oil and Poly (Ethylene Glycol)," Polym. Degrad. Stabil., 92(3), 480-489 (2007). https://doi.org/10.1016/j.polymdegradstab.2006.10.011
  22. Liu, D., Tian, H., Zhang, L., and Chang, P. R., "Structure and Properties of Blend Films Prepared from Castor Oil-Based Polyurethane/Soy Protein Derivative," Ind. Eng. Chem. Res., 47(23), 9330-9336 (2008). https://doi.org/10.1021/ie8009632
  23. Pena, R., Romero, R., Martinez, S. L., Ramos, M. J., Martinez, A., and Natividad, R., "Transesterification of Castor Oil: Effect of Catalyst and Co-solvent," Ind. Eng. Chem. Res., 48(3), 1186- 1189 (2009). https://doi.org/10.1021/ie8005929