• Title/Summary/Keyword: synthetic lubricant

Search Result 28, Processing Time 0.024 seconds

A Study on the Control of Microstructures of Polyalphaolefins via Cationic Polymerization (양이온 중합을 이용한 폴리알파올레핀의 미세구조 조절에 관한 연구)

  • Ko, Young Soo;Kwon, Wan-Seop;No, Myoung-Han;Yim, Jin-Heong
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.346-352
    • /
    • 2015
  • Polyalphaolefin (PAO) is a synthetic lubricant that is superior to mineral-based lubricants in the terms of physical and chemical characteristics such as low pour point, high viscosity index (VI), and thermal and oxidation stability. Several kinds of PAOs have been synthesized by using 1-pentene, 1-hexene, 1-octene, or 1-dodecene as monomer with three kinds of aluminum-based Lewis acid catalysts via cationic polymerization. The control of the catalytic performance and physical properties of PAO such like molecular weight, kinematic viscosity, pour point, and viscosity index was done by changing polymerization parameters. The alkyl aluminum halide-based catalysts show better catalytic activity than that of the conventional $AlCl_3$ catalyst. The microstructure of PAO was investigated by means of TOF-MS (time of flightmass spectroscopy) analysis in order to elucidate the correlation between the performances of the lubricant (VI, pour point) and the molecular structure of PAO. The VI of PAO increases with increases in the carbon number of ${\alpha}$-olefin. In other words, the performances of PAO as a lubricant strongly depended on the branch length of PAO.

Trends in Lubricants -Future Challenges

  • Shim, Joosup
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1995.06b
    • /
    • pp.1-3
    • /
    • 1995
  • Aspects of the current trend in lubricants and future challenges are discussed. The discussion highlights key enviromnental issues regarding to resource conservation, toxicological consideration and environmental acceptability. Also highlighted are base stocks trends relative to hydroprocessed stocks (HVI, VHQ and XHQ), synthetic base stocks (PAO and organic esters) and biodegradable fluids (vegetable oils and special esters). Equipment severity and lubricant performance quality are briefly described.

  • PDF

Synlube 제조에 관한 연구(I)

  • 김종호
    • Tribology and Lubricants
    • /
    • v.5 no.2
    • /
    • pp.7-20
    • /
    • 1989
  • 합성윤활유(synthetic lubricant)라 함은 현재까지도 계속되고 있는 광유(mineral oil) 전성시대의 광유에 대응되는 말로써 광유계 윤활유로 부터 얻기 어려운 높은 점도지수, 우수한 저온 유동성 등의 특성을 얻기 위해 유기합성방법에 의해 인위적으로 제조한 윤활유의 총칭이며 작용기의 종류, 합성방법, 등에 따라 다양하게 분류된다. 합성윤활유의 종류에는 합성방법에 따라 폴리머형(P형), 비폴리머형(N형)으로 대별되는데, 폴리머형 합성유에는 poly-butene, poly-$\alpha$-olefin, Polyalky lenglycol, Silicon oil, Chlorofluorocarbon, Perfiuoroalkylpolyether 등이 있으며, 비폴리머형 합성유에는 Alkylbenzene, Dibasicacidester, Polyolester, Silicate-ester Polyphenylether, Complex ester 등이 포함된다. 전자의 경우에는 중합반응 조건을 조절하므로써 여러점도 등급의 합성유들을 얻을 수 있는 반면 후자의 경우에는 분자량이 크지 않으므로 저점도의 것만 얻어지는 것이 특징이다.

A Study on Synthesis and Wear Characteristics of Metal Dithiophosphates (Metal Dithiophosphates의 합성과 마찰 마모 특성에 관한 연구)

  • 김종호;강석춘;정근우;조원오;한두희;박미선
    • Tribology and Lubricants
    • /
    • v.6 no.2
    • /
    • pp.68-75
    • /
    • 1990
  • The metal-dithiophosphates as lubricant additives for reducing friction and wear, increasing load-carrying capacity and a antioxidant are very important as new additives developed in these day. The synthetic results of Metal-DTPs were described. The wear test was conducted with 4-Ball machine and wear debris were analyzed by ferrography. The tribological performances of Metal-DTPs were compared with Zn-DTP.

High Temperature Lubrication with Phosphate Esters

  • Hanyaloglu, Bengi
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.177-183
    • /
    • 1995
  • Recent work with phosphate esters has shown that a lubricious polymeric film can formed from the vapor phase on interacting during and sliding. This lubrication technique has led to methods to reduce friction and wear to very low values at high temperatures up to 700$^{\circ}$C. Preliminary with synthetic tri aryl phosphates are very promising. The vaporized lubricant forms a polymeric film on the sliding and rolling surfaces reducing the coefficient of friction below 0.05. In-situ formation of the polymeric films shows that the polymer that is formed on the surface exists in different states depending on surface temperature.

Development of additives for DME as a renewable energy (신재생에너지로서 DME 연료의 첨가제 개발)

  • Jang, Eunjung;Park, Cheonkyu;Yim, Eui-Soon;Jung, Choong-Sub;Lee, Bonghee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.178.1-178.1
    • /
    • 2011
  • DME is generally expected to be used as a promising clean alternative fuel to diesel fuel. DME is not natural product but a synthetic product that is produced either through the dehydration of methanol or a direct synthetic from syngas. As DME has no carbon-carbon bond in its molecular structure and is an oxygenate fuel, it's combustion essentially generates no soot. DME has such cetane number of 55~60 that it can be used as a diesel engine fuel. However, DME has low lubricity but a proven method to solve the poor lubricity is by adding lubricity improver. Therefore, the aim of this study is to develop lubricity improver of DME as a transport fuel in Korea. In this study, we investigated a possibility of fatty acid ester compounds as a candidate to improve DME lubricity as compared with current lubricity improver of diesel. We also evaluated quality characteristics, storage stability of DME with lubricity additives.

  • PDF

A Study on Synthesis of Synthetic Lubricants (Synlube 제조에 관한 연구)

  • 정근우
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1989.06a
    • /
    • pp.1-21
    • /
    • 1989
  • 합성윤활유(synthetic lubricant)라 함음 현재까지도 계속되고 있는 광유(mineral oil)전성시대의 광유에 대응되는 말로써 광유계 윤활유로 부터 얻기 어려운 높은 점도지수, 낮은 저온 유동성 등의 특성을 얻기 위해 유기합성 방법에 의해 인위적으로 제조한 윤활유의 총칭이며 작용기의 종류, 합성방법, 등에 따라 다양하게 분류된다. 합성윤활유의 종류에는 합성방법에 따라 폴리머형(P형), 비포리머형(N형)으로 대별되는데, 폴리머형 합성유에는 Poly-butene, $Poly\alpha$-olefin, Polyalkylenglycol, Silicon oil, Chlorofluorocarbon, Perfluoroalkyl polyether등이 있으며, 비폴리머형 합성유에는 Alkylbenzene, Dibasicacidester, Polyolester, Silicate-ester Polyphenylether, Complex ester등이 포함된다. 전자의 경우에는 중합반응 조건을 조절하므로써 여러점도 등급의 합성유들을 얻을 수 있는 반면 후자의 경우에는 분자량이 크지 않으므로 저점도의 것만 얻어지는 것이 특징이다.

  • PDF

A Study on Wear Properties of Journal Bearing with Sommerfeld Number Variation (저어널 베어링의 좀머펠트 수 변화에 따른 마모 특성에 관한 연구)

  • 김철우;김경웅
    • Tribology and Lubricants
    • /
    • v.13 no.2
    • /
    • pp.16-26
    • /
    • 1997
  • In this paper, the characteristics of lubrication and wear phenomena of journal bearing with respect to film parameter and Sommerfeld number variation are investigated experimentally and the design criterion for the hydrodynamic journal bearing is presented to avoid wear and seizure. Experimental work is performed with various rotating speed and load, and lubricant is used synthetic oil and mineral oil. By the results of the experiment, it is found that friction coefficient is decreased as Sommerfeld number is decreased, and that wear phenomenon is observed when Sommerfeld number is below $9$\times$10^{-4}$ and there are much alike in wear properties between synthetic and mineral oil.

Analysis of Oil Performance by Different Type of Engine Oil In the Field (필드조건, 엔진오일의 종류에 따른 오일성능 분석)

  • Kim, Young Whan;Song, Jun Hee;Kim, Han Joo
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.131-136
    • /
    • 2017
  • Automobile engine oil is the most important lubricant for operating as the engine is started. Recently, manufacturers of the automotive industry and lubricants are considerably improving the quality of oil with additive to extend change cycle period. Most customers are recommended genuine oil among different types from shop expert. Through this report we suggest another reference point for consumer to pick highly efficient lubricant. This report is investigated oil compounds to compare with 6 different automotive considering actual running condition for 7 months. we conducted experiment from physical and chemical perspectives. In the field, through various experiments oil compounds between mineral oil and synthetic oil are largely distinguished in oxidation, viscosity, fluid and TBN. These are influenced by engine part wear as piston, bearing etc. Comparing various investigation with different oil the performance of synthetic oil is shown better condition in flash point, oxidation stability and also found less in change pollutant iron, Al compounds. Additives of oil show clear difference Ca level in detergent-dispersant both mineral oil and synthetic oil. And Zn in extreme pressure additives and P in Lubricity improver make no difference to both.

A study on Biodegradability of Vegetable Oil based EP Grease (식물유계 EP그리스의 생분해도 평가에 관한 연구)

  • Nam Kyung-Im;Kim Young-wun;Chung Keunwo;Cho Wonoh;Jeon In-sik;Chung Yong-Mi
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.139-148
    • /
    • 2003
  • In this study, biodegradable base Li-greases were prepared by using Li-soap thickener and vegetable oils such as soybean oil, rapeseed oil, castor oil and synthetic ester. Also, EP-greases were formulated by blending base Li-greases, anti-wear additives, EP additives, anti-oxidants and corrosion inhibitor etc. And EP-greases were characterized by analysing physical properties such as worked penetration, dropping point, 4-ball wear, extreme pressure, thermal properties etc. Biodegradability of base Li-greases and EP-greases were evaluated by CEC-L-33-A-93 method using several inoculums of domestic sewage treatment plant. As the results, biodegradability of vegetable oils were shown at the range of 97.1 to $98.4\%$. And biodegradability of base Li-greases and EP-greases were $86.2\%\;\~\;89.3\%\;and\;83.4\%\;\~\;90.0\%$ which were lower value than those o( vegetable oils due to effect of Li-soap thickener, respectively. Therefore, the EP-greases prepared in this study were easily biodegraded by microorgnism.

  • PDF