• Title/Summary/Keyword: synthetic fibers

Search Result 188, Processing Time 0.023 seconds

A Study on Features of Fire and Change of Extinguishing Capacity of Sprinkler Equipment Against Fire at a Traditional Market (재래시장에서의 화재조건에 따른 스프링클러설비의 소화성능변화와 화재특성에 관한 연구)

  • Park, Jin-Woo;Jeon, Gyu-Yeob;Na, Wook-Jung;Hong, Won-Hwa
    • Fire Science and Engineering
    • /
    • v.22 no.1
    • /
    • pp.128-138
    • /
    • 2008
  • Lots of products stocked at a traditional market are made of rubbers, synthetic fibers and plastics which when on fire, emit high heat to easily ignite nearby inflammables. And shops are not divided by fireproof partitions but by combustible curtains, which contributes to a possibility of a conflagration. In this study, danger and weak factors on fire at a traditional market was analyzed. Non-existence of partition between shops and the height of piled inflammables are set as danger factors and change of extinguishing capacity of sprinklers was analyzed using fire dynamics simulator. As a result, it turned out that partitions between shops and high-piled inflammables reduced watering radius of sprinklers and increased the size of fire and distribution of temperature.

Hydrophilic Finish of Polyester Fabrics using Sericin Finishing Agents (세리신 가공제에 의한 폴리에스터 직물의 친수화 가공)

  • Park, In-Woo;Hwang, Gye-Soon;Hong, Young-Ki;Bae, Han-Soo;Bae, Kie-Seo
    • Textile Coloration and Finishing
    • /
    • v.21 no.1
    • /
    • pp.38-45
    • /
    • 2009
  • First of all, the properties imparted to PET fabrics are resistance to and recovery from creasing or wrinkling when wet or dry; high resistance to stretch in the filament yarns but not in the staple; high abrasion resistance; good texture and appearance; resistance to heat ageing; good chemical resistance and good resistance, behind glass, to sunlight. But, the low moisture regain of PET fabric conduces to static troubles in textile processing. Furthermore, garments made from PET may, during wear, develop electric charges which attract to the fabric particles of soil(dirt, swarf, dust) flying in the air, so that the cuffs of shirts, for example, become soiled quickly and are not easily laundered clean. The sericin constitutes 25$\sim$30% of silk protein and surrounds the fibroin fiber with sticky layer that supports the formation of a cocoon. The useful biochemical properties of sericin protein are oxidation resistant, antibacterial, UV resistant, hydrophilic property, and good affinity with hydrophobic material. These properties can be used as an improving reagent or a coating agent for natural and synthetic fibers, fabrics, and other intermediate products. The sericin is also applied to cross-link, and can be blended with other materials. In this study, we modified the surface of PET fabric by mixture of sericin finishing agent; sericin, polyuretane binder and 1,2,3,4-butanetetracarboxylic acid (BTCA) cross-link agent. Also, we investigated the finshing effect; moisture regain, stiffness, handle, drape and electrostatic. The moisture regain of PET fabric treated with sericin finishing agent was higher than that of untreated PET fabric. As a result of evaluating influence about handle of PET fabrics treated with sericin finishing agent, it was confirmed that the sericin finishing agent could be use as a linen like finishing agent.

Dyeing Characteristics and Mechanical Properties of High Tenacity Polyethylene(HTPE) Filament using Solvent Dyes (솔벤트 염료를 이용한 고강도 폴리에틸렌(HTPE) 필라멘트사의 염색성 및 기계적 물성 평가)

  • Lee, Jeong Hoon;Lee, Beom Young;Lee, Seung O;Choi, Kyeong Yong;Ko, Jae Wang;Kim, Jung Su;Kim, Taekyeong;Lee, Seung Geol
    • Textile Coloration and Finishing
    • /
    • v.29 no.3
    • /
    • pp.105-114
    • /
    • 2017
  • High tenacity polyethylene(HTPE) fiber is one of the most important synthetic fibers which possesses outstanding properties such as low density, excellent surface hardness and scratch resistance, superior electrical insulation and low cost. In this study, we dyed high tenacity polyethylene filaments using three different solvent dyes based on log P calculations. We evaluated the dyeing characteristics of dyed high tenacity polyethylene filaments based on dyeing temperature, dyeing time and concentration of solvent dyes. We also analyzed the tensile strength and elongation properties of dyed high tenacity polyethylene filaments with various dyeing temperature and dyeing times. The optimized dyeing condition can be found at $120^{\circ}C$ for dyeing time of 1 hour with 4%(o.w.f.) of solvent dyes.

Fabrication of Nanofiber-Combined 3D Scaffolds using Dual-Head Deposition Technology (듀얼헤드 적층 기술을 이용한 나노섬유로 결합된 3D 인공지지체 제작)

  • Sa, Min-Woo;Lee, Chang-Hee;Kim, Jong Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.108-115
    • /
    • 2018
  • In bone tissue engineering, polycaprolactone (PCL) is one of the most widely used biomaterials to manufacture scaffolds as a synthetic polymer with biodegradability and biocompatibility. The polymer deposition system (PDS) with four axis heads, which can dispense bio-polymers, has been used in scaffold fabrication for tissue engineering applications. A dual-head deposition technology of PDS is an effective technique to fabricate 3D scaffolds. The electrospinning technology has been widely used to fabricate porous and highly interconnected polymer fibers. Thus, PDS can fabricate nanofiber-combined hybrid scaffolds using fused deposition modeling (FDM) and electrospinning methods. This study aims to fabricate nanofiber-combined scaffolds with uniform nanofibers using PDS. The PCL nanofibers were fabricated and evaluated according to the fabrication process parameters. PCL nanofibers were successfully fabricated when the applied voltage, tip-to-collector distance, flow rate, and solution concentration were 5 kV, 1 cm, 0.1 ml/h, and 8 wt%, respectively. The cell proliferation was evaluated according to the electrospinning time. Scanning electron microscopy was used to acquire images of the cross-sectioned hybrid scaffolds. The cell proliferation test of the PCL and nanofiber-combined hybrid scaffolds was performed using a CCK-8 assay according to the electrospinning time. The result of in-vitro cell proliferation using osteosarcoma MG-63 cells shows that the hybrid scaffold has good potential for bone regeneration.

Study on the Thermal Protective Performance Measurements of Fire Fighter's Protective Clothing for Low Level Radiant Heat Exposures (저열유속 조건의 복사열 노출에 따른 소방보호복의 열보호성능 측정에 관한 연구)

  • Lee, Jun-Kyoung;Bang, Young-Jun;Bang, Chang-Hoon;Kwon, Jung-Suk
    • Fire Science and Engineering
    • /
    • v.28 no.2
    • /
    • pp.1-8
    • /
    • 2014
  • Despite advancements in the development of synthetic fibers and materials that provide better insulation, fire burn injuries remain a significant issue. To ensure adequate protection, clothing and equipment must be selected on the basis of performance. There are different standards like ISO standards applicable to each of the various types of clothing used by fire fighters. But, in most cases, the tests are performed in the conditions of high heat flux exposure, the clothing material can be destroyed easily. Thus the effective way to investigate the protective performance for the low (radiant) heat flux conditions should be needed. Therefore improved RPP (Radiant Protective Performance) test method based on the onset of pain burn injury was suggested. Experiments were performed to verify the proposed method with current protective clothing for fire fighters and the transient heat transfer characteristics were identified, also. Moreover, several protective performance indices were acquired from experimental results to analyze their relations.

A Study on the Fabrication and Mechanical Properties Evaluation of Natural Fiber Composites added Eco-friendly Materials (친환경 소재를 첨가한 천연섬유 복합재의 제조 및 기계적 물성 평가 연구)

  • Kim, Jae-Cheol;Lee, Dong-Woo;Prabhakar, M.N.;Song, Jung-Il
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.213-219
    • /
    • 2020
  • Recently, global facing environmental issues have been raised caused by plastic waste. Hence, increasing the demand for interest in environmentally friendly materials. In this row, research on engineering composite materials also replacing the synthetic reinforcement by introducing natural fibers. However, focus on the strength and interfacial adhesion between matrix and reinforcement is very essential in natural fiber composite, which is insufficient in the literature. There are number of approaches for improving the mechanical strength of the composites, one of the common methods is to reinforce additive nanoparticles. The present investigation, bio-additives were synthesized utilizing bio-waste, cheap, bio-degradable sea-weed powder that could replace expensive nanomaterials and reinforced into the CFRP composite through Hand lay-up followed by a vacuum process. Mechanical properties were evaluated and analyzed through microanalysis. The results concluded that synthesized additives are effective for improving mechanical properties such as tensile, flexural, impact, and shear strength. Overall, the results confirmed that the fabricated composites have potential applications in the field of engineering applications.

Wet and Dry Strengths, and Air Permeability of Seedling Plate Paper (육묘용 포트원지의 습윤 및 건조강도와 투기도)

  • Seo, Won-Sung;Park, Jong-Moon
    • Horticultural Science & Technology
    • /
    • v.16 no.2
    • /
    • pp.229-232
    • /
    • 1998
  • This study was conducted to determine the properties of seedling plate papers currently used in commercial production, then to get basic information for manufacturing new seedling plate paper. Imported seedling plate paper had high wet tensile and burst strengths in its usage circumstances. Wet tensile strength was very high with 38.7% of dry tensile strength. Wet burst strength was also very high with 62.4% of dry burst strength. The seedling plate paper contained about 30% of synthetic fibers. It had 10 Gurley sec. in air permeability indicating effective movement of air. Seedling plate papers were' made in laboratory scale. For sufficient sizing degree, the addition of 0.5% AKD (alkylketene dimer) by weight was good enough. Additional amount of AKD more than 0.5% by weight caused strength loss even though improving sizing effect. The addition of wet strength reagent such as Finex-B 2% by weight resulted in good strength and air permeability.

  • PDF

Influence of Cement Matrix's Compressive Strength and Replacement of Expansive Admixture on the Mechanical Properties of Synthetic Polyethylene (PE) Fiber-Reinforced Strain-Hardening Cement-Based Composites (SHCCs) (압축강도와 팽창재 대체에 따른 폴리에틸렌 합성섬유로 보강된 변형 경화형 시멘트 복합체의 역학적 특성)

  • Song, Young Jae;Yun, Hyun Do;Min, Byung Sung;Rokugo, Keitetsu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.95-103
    • /
    • 2012
  • In order to improve the dimensional stability and mechanical performance of cement-based composites, the effect of an expansive admixture based on calcium sulphoaluminate (CSA) on the shrinkage and mechanical properties of strain-hardening cement-based composite (SHCC), which exhibits multiple cracks and pseudo strain-hardening behavior in the direct tension, is investigated. Polyethylene fibers reinforced SHCC mixtures with three levels (30, 70, and 100MPa) of compressive strength were compared through free shrinkage, compressive strength, flexural strength, and direct tensile strength measurements. The SHCC mixtures were cast with and without replacing 10% of Portland cement content with CSA admixture. According to test results, CSA admixture is effective in reducing shrinkage of SHCC material. SHCC mixture with CSA admixture exhibited a little higher strength than companion mixture without CSA admixture.

The roles of growth factors and hormones in the regulation of muscle satellite cells for cultured meat production

  • Syed Sayeed Ahmad;Hee Jin Chun;Khurshid Ahmad;Sibhghatulla Shaikh;Jeong Ho Lim;Shahid Ali;Sung Soo Han;Sun Jin Hur;Jung Hoon Sohn;Eun Ju Lee;Inho Choi
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.16-31
    • /
    • 2023
  • Cultured meat is a potential sustainable food generated by the in vitro myogenesis of muscle satellite (stem) cells (MSCs). The self-renewal and differentiation properties of MSCs are of primary interest for cultured meat production. MSC proliferation and differentiation are influenced by a variety of growth factors such as insulin-like growth factors (IGF-1 and IGF-2), transforming growth factor beta (TGF-β), fibroblast growth factors (FGF-2 and FGF-21), platelet-derived growth factor (PDGF) and hepatocyte growth factor (HGF) and by hormones like insulin, testosterone, glucocorticoids, and thyroid hormones. In this review, we investigated the roles of growth factors and hormones during cultured meat production because these factors provide signals for MSC growth and structural stability. The aim of this article is to provide the important idea about different growth factors such as FGF (enhance the cell proliferation and differentiation), IGF-1 (increase the number of myoblasts), PDGF (myoblast proliferation), TGF-β1 (muscle repair) and hormones such as insulin (cell survival and growth), testosterone (muscle fiber size), dexamethasone (myoblast proliferation and differentiation), and thyroid hormones (amount and diameter of muscle fibers and determine the usual pattern of fiber distributions) as media components during myogenesis for cultured meat production.

Studies on Silk Textile Wash and Wear Finishing (絹織物 Wash and Wear 加工硏究)

  • Choe, Byong-Hee;Lee, Yang-Hoo
    • Journal of Sericultural and Entomological Science
    • /
    • v.23 no.1
    • /
    • pp.47-55
    • /
    • 1981
  • Silk textile finishing has been studied for many years by many workers in order to meet more utilities for various endusers. Such studies, however, could not be successful because any natural fibers are hardly change their natures by artificial treating methods. Textile finishing is of course to improve the mechandise qualities and the poor natures of silk so that it may be available as the best textile fiber in the world. Sometimes, famous trade marked textile plays more power than its quality in the silk market, nevertheless, this should be over line of research activities. Meantime, the silk demand has been also transferred from ladies stocking to other clothes since nylon or other synthetic fibers were developed. That is why, the extension of silk demand should be developed by various research works. Specially, silk is known as difficult textile to handle it during washing or ironing process which happened to depress down the silk usage for house wives. In order to solve such problems, the reporter has been worked for many years and now, he believes that he has developed a proper finishing method to coversuch problems. The developed finishing method may be said to eligible with economical aspect and shorten the dry duration after water washing in half against normal silk textile without harming the specific silk nature. As all of us know, silk fiber starts to denature since it was spinned by silkworm and the fiber is formed as overlapped "S" type curves during its concooning process. After it is made as raw silk or sericin silk, it shows as straight line form, but it changes in to waved form in case refining or degumming process in order return to its original spinned form. Such nature is continued during its textile form and ends with hard ironing nature than other textile fibers. Mean while, the silk fiber keeps to continue its denaturing and this is iniciated by repeat of washing and drying which takes many years to reach its final stage, The reporter has found the iniciating denature of silk by his finishing process, with out heat, decreasing the swollen nature which ended with shortening the drying duration after wash. Each washing was carried out by soaking the previously weighed sample in cold water for one hour, then pressed the sample for ten minutes to eliminate its free water component before weighing with same condition. According to this, the treated silk showed much denaturing after the finishing, but the standard silk progressed the denaturing by and by with the repeat of washing and drying, finally reached the same swollen degree of treated silk, Such treating result explains that the treated silk happened to be stebilized nature by the treating immediately. On the other that the treated silk happened to be stebilized nature by the treating immediately. On the other hand, standard silk may reach to such condition by the time of worn out clothes after repeat of washing and drying for many years while the clothes will be no more useful. The decreased swelling nature has brought about the drying period in half against standard silk after all. Not only the tests of tenacity and elongation but also crease resistance recovery, stiffness and shrinkage tests were carried out after each washing and drying which he has found better result on the treated silk textile against the standard silk. The most important thing was to keep the textile feeling of silk by such finishing work before improve any poor nature of silk. The general silk has a nature to absorb smoke or dirt from its surrounding air and reaches to dirty color shade upon such exposure, but the treated one has improved such nature because of its artificial denaturing, another word, it keeps clean longer than the normal silk. Many previous finishing works could improve some specific nature of silk, but it happened to deprave other important natures. The reporters work is, however, specialized to improve the silk to be useful as Wash and Wear Silk without harming its standard natures. So far, this work happened to be a overall innovative finishing method of silk textile.

  • PDF