References
- Zhao, X., Courtney, J. M., & Qian, H., "Bioactive materials in medicine : Design and applications", Woodhead publishing in materials, 2011.
- Mohanty, S., Larsen, L. B., Trifol, J., Szabo, P., Burri, H. V. R., Canali, C., ... & Wolff, A. "Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds." Materials science and engineering : C, Vol. 55, pp. 569-578, 2015.
- Qazi, T. H., Rai, R., & Boccaccini, A. R. "Tissue engineering of electrically responsive tissue using polyaniline based polymers : A review," Biomaterials, Vol. 35, No. 33, pp. 9068-9086, 2014. https://doi.org/10.1016/j.biomaterials.2014.07.020
- Yoshida, A., Chitcholtan, K., Evans, J. J., Nock, V., & Beasley, S. W. "In vitro tissue engineering of smooth muscle sheets with peristalsis using a murine induced pluripotent stem cell line," Journal of pediatric surgery, Vol. 47, No. 2, pp. 329-335, 2012. https://doi.org/10.1016/j.jpedsurg.2011.11.027
- Wongwitwichot, P., Kaewsrichan, J., Chua, K. H., & Ruszymah, B. H. I. "Comparison of TCP and TCP/HA hybrid scaffolds for osteoconductive activity," The open biomedical engineering journal, Vol. 4, pp. 279-285, 2010. https://doi.org/10.2174/1874120701004010279
- Sa, M. W., & Kim, J. Y. "Effect of various blending ratios on the cell characteristics of PCL and PLGA scaffolds fabricated by polymer deposition system," International journal of precision engineering and manufacturing, Vol. 14, No. 4, pp. 649-655, 2013. https://doi.org/10.1007/s12541-013-0087-x
-
Ghasemi-Mobarakeh, L., Prabhakaran, M. P., Morshed, M., Nasr-Esfahani, M. H., & Ramakrishna, S. "Electrospun poly(
${\varepsilon}$ -caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering," Biomaterials, Vol. 29, No. 34, pp. 4532-4539, 2008. https://doi.org/10.1016/j.biomaterials.2008.08.007 -
Peter, M., Kumar, P. T. S., Binulal, N. S., Nair, S. V., Tamura, H., & Jayakumar, R. "Development of novel
${\alpha}$ -chitin/nanobioactive glass ceramic composite scaffolds for tissue engineering applications," Carbohydrate polymers, Vol. 78, No. 4, pp. 926-931,2009. https://doi.org/10.1016/j.carbpol.2009.07.016 - Martel-Estrada, S. A., Rodriguez-Espinoza, B., Santos-Rodriguez, E., Jimenez-Vega, F., Garcia-Casillas, P. E., Martinez-Perez, C. A., & Armendariz, I. O. "Biocompatibility of chitosan/Mimosa tenuiflora scaffolds for tissue engineering," Journal of alloys and compounds, Vol.643, pp. 119-123, 2015. https://doi.org/10.1016/j.jallcom.2015.01.034
-
Hayati, A. N., Hosseinalipour, S. M., Rezaie, H. R., & Shokrgozar, M. A. "Characterization of poly(
${\varepsilon}$ -hydroxybutyrate)/nano-hydroxyapatite composite scaffolds fabricated without the use of organic solvents for bone tissue engineering application," Materials science and engineering : C, Vol. 32, No. 3, pp. 416-422, 2012. https://doi.org/10.1016/j.msec.2011.11.013 - Zhao, L., Wu, Y., Chen, S., & Xing, T. "Preparation and characterization of cross-linked carboxymethyl chitin porous membrane scaffold for biomedical applications," Carbohydrate polymers, Vol. 126, pp. 150-155, 2015. https://doi.org/10.1016/j.carbpol.2015.02.050
- Kim, J. Y., Yong, J. J., Park, E. K., Kim, S. Y., & Cho, D. W. "The fabrication of rapid prototype based 3D PCL and PLGA scaffolds using precision deposition system," Tissue engineering and regenerative medicine, Vol. 5, No. 3, pp. 506-511, 2008.
- Du, Y., Chen, X., Koh, Y. H., & Lei, B. O. "Facilely fabricating PCL nanofibrous scaffold with hierarchical pore structure for tissue engineering," Materials letters, Vol. 122, pp. 62-65, 2014. https://doi.org/10.1016/j.matlet.2014.02.031
- Ghasemi-Mobarakeh, L., Prabhakaran, M. P., Morshed, M., Nasr-Esfahani, M. H., & Ramakrishna, S. "Bio-functionalized PCL nanofibrous scaffolds for nerve tissue engineering," Materials science and engineering : C, Vol. 30, No. 8, pp. 1129-1136, 2010. https://doi.org/10.1016/j.msec.2010.06.004
- Johnson, T., Bahrampourian, R., Patel, A., & Mequanint, K. "Fabrication of highly porous tissue-engineering scaffolds using selective spherical porogens," Biomedical master engineering, pp. 107-118, 2010
- Mikos, A. G., & Temenoff, J. S. "Formation of highly porous biodegradable scaffolds for tissue engineering," Electronic Journal of biotechnology, Vol. 3, No. 2, pp. 2000.
- Goudouri, O. M., Theodosoglou, E., Kontonasaki, E., Will, J., Chrissafis, K., Koidis, P., ... & Boccaccini, A. R. "Development of highly porous scaffolds based on bioactive silicates for dental tissue engineering," Materials research bulletin, Vol. 49, pp. 399-404, 2014. https://doi.org/10.1016/j.materresbull.2013.09.027
-
Kim, S. E., Yun, H. S., Hyun, Y. T., Shin, J. W., & Song, J. J. "Nano-hydroxyapatite/poly
${\varepsilon}$ -caprolactone composite 3D scaffolds for mastoid obliteration," Journal of Physics : Conference Series, 2008. - Oryan, A., Alidadi, S., Moshiri, A., & Maffulli, N. "Bone regenerative medicine: classic options, novel strategies, and future directions," Journal of orthopaedic surgery and research, 2014.
- Dhandayuthapani, B., Yoshida, Y., Maekawa, T., & Kumar, D. S. "Polymeric Scaffolds in Tissue Engineering Application: A Review," International journal of polymer science, 2011.
- Kim, J. Y., Yoon, J. J., Park, E. K., Kim, S. Y., & Cho, D. W. "Fabrication of 3D PCL/PLGA/TCP bio-scaffold using multi-head deposition systerm and design experiment," Korean society for precision engineering, Vol. 26, No. 1, pp. 146-154, 2008.
- Vroman, I., & Tighzert, L. "Biodegradable polymers," Materials, 2009.
- Vasita, R., & Katti, D. S. "Nanofibers and their applications in tissue engineering," International journal of nanomedicine, pp. 15-30, 2006.
- Yao, J., Bastiaansen, C. W., & Peijs, T. "High strength and high modulus electrospinning nanofibers," fibers, Vol.2, No. 2, pp. 158-186, 2014. https://doi.org/10.3390/fib2020158
- Ku, S. H., Lee, S. H., & Park, C. B. "Synergic effects of nanofiber alignment and electroactivity on myoblast differentiation," Biomaterials, Vol. 33, No. 26, pp. 6098-6104, 2012. https://doi.org/10.1016/j.biomaterials.2012.05.018
- Chaurey, V., Block, F., Su, Y. H., Chiang, P. C., Botchwey, E., Chou, C. F., & Swami, N. S. "Nanofiber size-dependent sensitivity of fibroblast directionality to the methodology for scaffold alignment." Acta biomaterialia, Vol. 8, No. 11, pp. 3982-3990, 2012. https://doi.org/10.1016/j.actbio.2012.06.041
Cited by
- 레이저 소결 적층 시스템과 실험 계획법을 이용한 3차원 바이오 세라믹 인공지지체의 제작 vol.18, pp.12, 2018, https://doi.org/10.14775/ksmpe.2019.18.12.059