• 제목/요약/키워드: Polymer Deposition System

검색결과 52건 처리시간 0.021초

폴리머 적층 시스템을 이용한 다양한 3 차원 미세 구조물 제작에 관한 연구 (A Study on the Fabrication of Various 3D Microstructures using Polymer Deposition System)

  • 김종영
    • 한국정밀공학회지
    • /
    • 제29권6호
    • /
    • pp.686-692
    • /
    • 2012
  • Solid free-form fabrication (SFF) technology was developed to fabricate three-dimensional (3D) scaffolds for tissue engineering (TE) applications. In this study, we developed a polymer deposition system (PDS) and created 3D microstructures using a bioresorbable polycaprolactone (PCL) polymer. Fabrication of 3D scaffolds by PDS requires a combination of several devices, including a heating system, dispenser, and motion controller. The system can process a polymer with extremely high precision by using a 200 ${\mu}m$ nozzle. Based on scanning electron microscope (SEM) images, both the line width and the piled line height were fine and uniform. Several 3D micro-structures, including the ANU pattern (a pattern named after Andong National University), $45^{\circ}$ pattern square, frame, cylindrical, triangular, cross-shaped, and hexagon, have been fabricated using the polymer deposition system.

노즐 가이드를 적용한 폴리머 적층 시스템의 Washer Scaffold 제작을 위한 성능 개선 (Performance Improvement of Polymer Deposition System by Nozzle Guide and Its Application to Washer Scaffold Fabrication)

  • 사민우;김종영
    • 대한기계학회논문집B
    • /
    • 제37권3호
    • /
    • pp.249-257
    • /
    • 2013
  • 쾌속조형기술을 이용한 3차원 형상의 인공지지체가 조직공학 적용을 위해 개발되고 제작되었다. 본 연구에서는 폴리머 적층 시스템을 이용한 스캐폴드 제작에 있어 시린지 노즐 부분에 노즐 가이드를 장착하여 폴리머 적층 폭과 높이 실험을 수행하였다. 이 때 인공지지체 제작을 위한 생체재료로 폴리카프로락톤이 사용되었다. 폴리머 적층 공정 조건으로는 600 kPa의 공압과 $125^{\circ}C$의 온도가 이용되었다. 성공적인 와셔 인공지지체 제작을 통해 폴리머 적층 시스템에 적용된 노즐 가이드의 성능이 검증되었다. 결론적으로, 향상된 폴리머 적층 시스템을 이용함으로써 복잡한 형상의 조직공학용 3 차원 인공지지체를 제작할 수 있을 것으로 기대된다.

3차원 미세 구조물 제작을 위한 폴리머 유동 모델의 적용 (Application of the Polymer Behavior Model to 3D Structure Fabrication)

  • 김종영;조동우
    • 한국정밀공학회지
    • /
    • 제26권12호
    • /
    • pp.123-130
    • /
    • 2009
  • This study presents the application of a polymer behavior model that considers fluid mechanics and heat transfer effects in a deposition system. The analysis of the polymer fluid properties is very important in the fabrication of precise microstructures. This fluid behavior model involves the calculation of velocity distribution and mass flow rates that include the effect of heat loss in the needle. The effectiveness of the proposed method was demonstrated by comparing estimated mass fluid rates with experimental values. The mass fluid rates under various process conditions, such as pressure, temperature, and needle size, reflected the actual deposition state relatively well, and the assumption that molten polycaprolactone(PCL) is a non-Newtonian fluid was reasonable. The successful fabrication of three-dimensional microstructures demonstrated that the model is valid for predicting the polymer behavior characteristics in the microstructure fabrication process. The results of this study can be used to investigate the effect of various parameters on fabricated structures before turning to experimental approaches.

듀얼헤드 적층 기술을 이용한 나노섬유로 결합된 3D 인공지지체 제작 (Fabrication of Nanofiber-Combined 3D Scaffolds using Dual-Head Deposition Technology)

  • 사민우;이창희;김종영
    • 한국기계가공학회지
    • /
    • 제17권1호
    • /
    • pp.108-115
    • /
    • 2018
  • In bone tissue engineering, polycaprolactone (PCL) is one of the most widely used biomaterials to manufacture scaffolds as a synthetic polymer with biodegradability and biocompatibility. The polymer deposition system (PDS) with four axis heads, which can dispense bio-polymers, has been used in scaffold fabrication for tissue engineering applications. A dual-head deposition technology of PDS is an effective technique to fabricate 3D scaffolds. The electrospinning technology has been widely used to fabricate porous and highly interconnected polymer fibers. Thus, PDS can fabricate nanofiber-combined hybrid scaffolds using fused deposition modeling (FDM) and electrospinning methods. This study aims to fabricate nanofiber-combined scaffolds with uniform nanofibers using PDS. The PCL nanofibers were fabricated and evaluated according to the fabrication process parameters. PCL nanofibers were successfully fabricated when the applied voltage, tip-to-collector distance, flow rate, and solution concentration were 5 kV, 1 cm, 0.1 ml/h, and 8 wt%, respectively. The cell proliferation was evaluated according to the electrospinning time. Scanning electron microscopy was used to acquire images of the cross-sectioned hybrid scaffolds. The cell proliferation test of the PCL and nanofiber-combined hybrid scaffolds was performed using a CCK-8 assay according to the electrospinning time. The result of in-vitro cell proliferation using osteosarcoma MG-63 cells shows that the hybrid scaffold has good potential for bone regeneration.

폴리머 적층 시스템을 이용한 β-TCP 혼합 비율에 따른 PCL/β-TCP 인공지지체의 제작 (Fabrication of Blended PCL/β-TCP Scaffolds by Mixture Ratio of β-TCP using Polymer Deposition System)

  • 하성우;김종영
    • 한국정밀공학회지
    • /
    • 제31권9호
    • /
    • pp.791-797
    • /
    • 2014
  • Abstract Scaffold used as a carrier of the cell has been actively conducted using plenty of technology in tissue engineering. ${\beta}$-tricalcium phosphate (${\beta}$-TCP) material has shown good biocompatibility and osteoconductive ability when it was implanted as a bone graft substitute in osseous defect in human and animal studies for bone regeneration. In this study, we fabricated the blended polycaprolactone (PCL) and ${\beta}$-TCP scaffold by the polymer deposition system (PDS). The PCL/${\beta}$-TCP scaffold was fabricated at a temperature of $110^{\circ}C$, pressure of 650 kPa, and scan velocity of 100 mm/sec. The Overall geometry and size of the scaffold were fixed circle type with a diameter of 10 mm and a height of 4 mm. PCL/${\beta}$-TCP scaffold was observed by scanning electron microscopy. Cell attachment and proliferation of the scaffold containing 30 wt% ${\beta}$-TCP was superior to those containing 10 wt% and 20 wt% ${\beta}$-TCP.

A Nano-particle Deposition System for Ceramic and Metal Coating at Room Temperature and Low Vacuum Conditions

  • Chun, Doo-Man;Kim, Min-Hyeng;Lee, Jae-Chul;Ahn, Sung-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권1호
    • /
    • pp.51-53
    • /
    • 2008
  • A new nano-particle deposition system (NPDS) was developed for a ceramic and metal coating process. Nano- and micro-sized powders were sprayed through a supersonic nozzle at room temperature and low vacuum conditions to create ceramic and metal thin films on metal and polymer substrates without thermal damage. Ceramic titanium dioxide ($TiO_2$) powder was deposited on polyethylene terephthalate substrates and metal tin (Sn) powder was deposited on SUS substrates. Deposition images were obtained and the resulting chemical composition was measured using X-ray photoelectron spectroscopy. The test results demonstrated that the new NPDS provides a noble coating method for ceramic and metal materials.

Fabrication of Composite Drug Delivery System Using Nano Composite Deposition System and in vivo Characterization

  • Chu, Won-Shik;Jeong, Suk-Yong;Pandey, Jitendra Kumar;Ahn, Sung-Hoon;Lee, Jae-Hoon;Chi, Sang-Cheol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권2호
    • /
    • pp.81-83
    • /
    • 2008
  • The Rapid Prototyping (RP) technology has advanced in many application areas. In this research, two different types, cylinder and scaffold, of implantable Drug Delivery System (DDS) were fabricated using Nano Composite Deposition System (NCDS), one of the RP systems. The anti-cancer drug (5-fluorouracil, 5-FU), biodegradable polymer (PLGA(85: 15)), and bio ceramic (Hydroxyapatite, HA) were used to form drug-polymer composite material. Both types of DDS were evaluated in vivo environment for two weeks. For evaluation, the cumulative drug release and shape stability were measured. Test results showed that the scaffold DDS provide higher cumulative drug release and has better stability than cylinder DDS.

PET 기질의 전처리효과가 상온 ECR 화학증착법에 의해 증착된 구리박막의 계면접착력에 미치는 영향 (Effects of Pretreatments of PET Substrate on the Adhesion of Copper Films Prepared by a Room Temperature ECR-MOCVD Method)

  • 현진;전법주;변동진;이중기
    • 한국재료학회지
    • /
    • 제14권3호
    • /
    • pp.203-210
    • /
    • 2004
  • Effects of various pretreatments on the adhesion of copper-coated polymer films were investigated. Copper-coated polymer films were prepared by an electron cyclotron resonance-metal organic chemical vapor deposition (ECR-MOCVD) coupled with a DC bias system at room temperature. PET(polyethylene terephthalate) film was employed as a substrate material and it was pretreated by industrially feasible methods such as chromic acid, sand-blasting, oxygen plasma and ion-implantation treatment. Surface characterization of the copper-coated polymer film was carried out by AFM(Atomic Force Microscopy) and FESEM(Field Emission Scanning Electron Microscopy). Surface energy was calculated by based on the value of the contact angle measured. The adhesion of copper/PET films was determined by a pull-off test according to ASTM D-5179. It was found that suitable pretreatment of the PET substrate was required for obtaining good adhesion property between copper films and the substrate. In this study the highest adhesion was observed in sand-blasting, and then followed by those of acid and oxygen plasma treatment. However, the effect of surface energy was insignificant in our experimental range. This is probably due to compensating the difference in surface energy from various pretreatments by exposing substrate to ECR plasma for 5 min or longer at the early stage of the copper deposition. Therefore, it can be concluded that surface roughness of the polymer substrate plays an important role to determine the adhesion of copper-coated polymer for the deposition of copper by ECR-MOCVD.

열 용해 적층법과 염 침출법을 이용한 3 차원 이중 공 인공지지체 제작에 관한 연구 (A Study on Fabrication of 3D Dual Pore Scaffold by Fused Deposition Modeling and Salt-Leaching Method)

  • 심해리;김종영
    • 대한기계학회논문집A
    • /
    • 제39권12호
    • /
    • pp.1229-1235
    • /
    • 2015
  • 3D 프린터를 이한 인공지지체 제작 기술은 손상된 골 조직 재생을 위해 개발되고 있다. 골 조직 재생에 적하기 위해 인공지지체는 생체적합성, 생분해성 그리고 적절한 기계적 특성을 지녀야 하며, 분한 양의 공극과 내부 연결성을 지닌 구조로 제작되어야 한다. 본 연구에서는 3 차원 이중 공극 인공지지체를 제작하기 위해서 열 해 적층법(fused deposition modeling, FDM) 기반의 폴리머 적층 시스템을 이하였다. 사된 재료는 폴리카프로락톤(polycaprolactone, PCL)과 알긴산 나트륨(sodium alginate, SA)이다. 제작된 3 차원 형상의 인공지지체에 이중 공극을 갖기 위해 염 침출법을 이하였다. 완성된 인공지지체는 주사 전자 현미경과 X 선 검출 분광기(scanning electron microscope-energy dispersive spectroscopy, SEM-EDS)를 통해 관찰하였으며, MG-63 세포를 이하여 in-vitro 평가를 하였다.