• Title/Summary/Keyword: synergistic antibacterial activity

Search Result 86, Processing Time 0.012 seconds

Antibacterial and Synergistic Activity of Isocryptomerin Isolated from Selaginella tamariscina

  • Lee, June-Young;Choi, Yun-Jung;Woo, Eun-Rhan;Lee, Dong-Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.2
    • /
    • pp.204-207
    • /
    • 2009
  • We investigated novel antibacterial and synergistic activities of isocryptomerin isolated from Selaginella tamariscina. Isocryptomerin showed potent antibacterial activity against Gram-positive and Gram-negative bacterial strains including clinical isolates of antibiotic-resistant species such as methicillin-resistant Staphylococcus aureus(MRSA). Additionally, we further investigated the synergistic activity of isocryptomerin with a conventional antibiotic against MRSA. The result indicated that isocryptomerin had considerable synergistic activity in combination with cefotaxime. In summary, the present study suggests that isocryptomerin may have potential as a novel therapeutic agent for treatment of infectious diseases by not only human pathogenic bacteria but also multidrug-resistant bacteria.

Synergistic Killing Effect of Synthetic Peptide P20 and Cefotaxime on Methicillin-Resistant Nosocomial Isolates of Staphylococcus aureus

  • Jung, Hyun-Jun;Choi, Kyu-Sik;Lee, Dong-Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1039-1046
    • /
    • 2005
  • The salt resistance of antibacterial activity and synergistic effect with clinically used antibiotic agents are critical factors in developing effective peptide antibiotic drugs. For this reason, we investigated the resistance of antibacterial activity to antagonism induced by NaCl and $MgCl_2$ and the synergistic effect of P20 with cefotaxime. P20 is a 20-residue synthetic peptide derived from a cecropin A (CA)-melittin(ME) hybrid peptide. In this study, P20 was found to have potent antibacterial activity against clinically isolated methicillin-resistant Staphylococcus aureus (MRSA) strains without hemolytic activity against human erythrocytes. The combination study revealed that P20 in combination with cefotaxime showed synergistic antibacterial activity in an energy-dependent manner. We also confirmed the synergism between P20 and cefotaxime by fluorescence-activated flow cytometric analysis by staining bacterial cells with propidium iodide (PI) and bis-(1,3-dibutylbarbituric acid) trimethine oxonol (BOX). This study suggests that P20 may be useful as a therapeutic antibiotic peptide with synergistic effect in combination with conventional antibiotic agents.

Characterization of Antibacterial Activity and Synergistic Effect of Cationic Antibacterial Peptide-resin Conjugates

  • Kim, Jeong-Min;Jang, Su-Jung;Yang, Mi-Hwa;Cho, Hyeong-Jin;Lee, Keun-Hyeung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3928-3932
    • /
    • 2011
  • We synthesized peptide-resin conjugates (1 and 2) by immobilizing ${\beta}$-sheet antibacterial peptide and ${\alpha}$ helical antibacterial peptide on PEG-PS resin, respectively. Conjugate 1 showed considerable antibacterial activity in various conditions, whereas conjugate 2 did not exhibit antibacterial activity. The growths of various bacteria were inhibited by conjugate 1 even at lower concentrations than MIC. Conjugate 1 killed bacteria at MIC and had a potent synergistic effect with current antibacterial agents such as vancomycin and tetracycline, respectively. Overall results indicate that polymer surface modification using antibacterial ${\beta}$ sheet peptide is a powerful way to prevent microbial contamination on polymer surfaces.

Periplanetasin-2 Enhances the Antibacterial Properties of Vancomycin or Chloramphenicol in Escherichia coli

  • Lee, Heejeong;Hwang, Jae Sam;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.189-196
    • /
    • 2021
  • Periplanetasin-2 from cockroach exhibits broad-spectrum antimicrobial activity. The underlying antibacterial mechanisms rely on the stimulation of reactive oxygen species overproduction to induce apoptotic cell death. A promising strategy to increase the bioavailability of periplanetasin-2 involves reducing the dose through combination therapy with other antibacterials that show synergistic effects. Thus, the synergistic antibacterial activity of periplanetasin-2 with conventional antibacterial agents and its mechanisms was examined against Escherichia coli in this study. Among the agents tested, the combinations of periplanetasin-2 with vancomycin and chloramphenicol exhibited synergistic effects. Periplanetasin-2 in combination with vancomycin and chloramphenicol demonstrated antibacterial activity through the intracellular oxidative stress response. The combination with vancomycin resulted in the enhancement of bacterial apoptosis-like death, whereas the combination with chloramphenicol enhanced oxidative stress damage. These synergistic interactions of periplanetasin-2 can help broaden the spectrum of conventional antibiotics. The combination of antimicrobial peptides and conventional antibiotics is proposed as a novel perspective on treatments to combat severe bacterial infection.

Synergistic Antibacterial Activity of Ecklonia cava Extract against Anti-biotic Resistant Enterococcus faecalis (항생제 내성 Enterococcus faecalis에 대한 감태(Ecklonia cava) 추출물의 항균 시너지 효과)

  • Kim, Seung-Yong;Kim, Young-Mog;Kim, Eunjung;Lee, Myung-Suk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.1
    • /
    • pp.51-57
    • /
    • 2015
  • With continuing demand for the development of new, effective and safe therapies, an investigation was carried out to test the efficacy of an antibacterial agent derived from marine edible seaweed. The methanolic extract of Ecklonia cava from marine edible seaweed evinced potential antibacterial activity against Enterococcus faecalis. Among five solvent-soluble fractions of E. cava methanolic extract, the ethyl acetate soluble extract (EtOAc) exhibited the strongest antibacterial activity, with a MIC value of $128{\mu}g/mL $ against E. faecalis strains. Furthermore, a synergistic antibacterial effect between an antibiotic and the EtOAc fraction was assessed using fractional inhibitory concentration (FIC) indices. A combination of ciprofloxacin and the EtOAc fraction resulted in a ${\sum}FIC_{min}$ range of 0.188 and ${\sum}FIC_{max}$ of 0.508 to 563, suggesting that the ciprofloxacin-EtOAc fraction of E. cava combination resulted in an antibacterial synergy effect against E. faecalis.

Screening of Antibacterial Activity Against to Staphylococcus aureus, Listeria monocytogens, Mannhemia haemolytica and Salmonella gallinarum using Different Plant Extracts (다양한 식물들을 이용한 Staphylococcus aureus, Listeria monocytogens, Mannhemia haemolytica 및 Salmonella gallinarum 항균 추출물 탐색)

  • Ham, Young-Joo;Yang, Jin-Ho;Na, Chong-Sam
    • Korean Journal of Organic Agriculture
    • /
    • v.21 no.1
    • /
    • pp.105-113
    • /
    • 2013
  • Antibacterial activity is an important feature for the development of antibiotics alternatives. Plant extract is considered as a promising alternative for organic farming. In this study, a total of 11 plants were extracted using ethanol to determine their antibacterial activities against to Staphylococcus aureus, Listeria monocytogens, Mannheimia haemolytica and Salmonella gallinarum. The synergistic interaction among plant extracts was also investigated. Plants used in this study were Carthamus nctoricus L. (pA), Poncirus trifollata Raf. (pB), Scutellaria balcalensis Georgi (pC) Prunus sargentii (pD), Cucurbita moschata $D_{UCH}$ Leaf (pE), Allium cepa L. peel (pF) Portulaca oleracea L. (pG), Xanthium strumarium L. (pH), Duchesnea chrysantha (pI), Cudrania tricuspidata (pJ) and Juniperus chinensis L. (pK). The pB and pA had the most broad antibacterial spectrum and the highest activity against to Staph. aureus among plant extract, respectively. In the synergistic interaction, the mixtures of pA and pC as well as pA and pF had batter antibacterial activity against to Staph. Aureus compared with other mixtures.

Antibacterial Activity and Synergism of the Hybrid Antimicrobial Peptide, CAMA-syn

  • Jeong, Ki-Woong;Shin, So-Young;Kim, Jin-Kyoung;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1839-1844
    • /
    • 2009
  • A 20-residue hybrid peptide CA(1-8)-MA(1-12) (CAMA) incorporating residues 1-8 of cecropin A (CA) and residues 1-12 of magainin 2 (MA) has high antimicrobial activity without toxicity. To investigate the effects of the total positive charges of CAMA on the antibacterial activity and toxicity, a hybrid peptide analogue (CAMA-syn) was designed with substitutions of $Ile^{10}\;and\;Ser^{16}$ with Lys. According to CD spectra, structure of CAMA-syn with increase of cationicity was very similar to that of CAMA in DPC micelle. CAMA-syn showed antimicrobial activity similar with CAMA while CAMA-syn has no hemolytic activity and much lower cytotoxicity against RAW 264.7 macrophage cells than CAMA. Also, CAMA and CAMA-syn significantly inhibited NO production by LPSstimulated RAW264.7 macrophage at 10.0∼20.0 $\mu$M. CAMA-syn displayed salt resistance on antimicrobial activity against Escherichia coli at the physiological concentrations of $CaCl_2\;and\;MgCl_2$. The combination studies of peptides and antibiotics showed that CAMA-syn has synergistic effects with synthetic compound and flavonoid against Enterococcus faecalis and VREF. CAMA-syn can be a good candidate for the development of new antibiotics with potent antibacterial and synergistic activity but without cytotoxicity.

A Study on Synergistic Antibacterial Activity of Cosmetic Ingredients (화장품 성분들의 세균에 대한 항균 시너지 효과 연구)

  • Kim, So-Hee;Yun, Yuna;An, Susun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • In this study, 1,2-hexanediol, ethylhexylglycerin, and glyceryl caprylate known as skin conditioning agents with antimicrobial activity in cosmetics were investigated for their antimicrobial activity against gram-positive and gram-negative bacteria when combining them with various ingredients in cosmetic formulations. Seven kinds of substances expected to improve the antibacterial activity in formulations were selected to blend with these three compounds.; 1,3-propanediol, 1,3-butanediol, glycerin, dipropylene glycol, niacinamide, EDTA-2Na, and ethanol. The checkerboard assay was conducted to confirm the antibacterial synergy of these seven substances and the three skin conditioning agents. Consequently, ethanol and EDTA-2Na were detected as the significant materials with synergistic effect as well as ethanol showed antibacterial synergy with all the three compounds. When seven of selected materials were mixed with glyceryl caprylate, there were synergistic or additive activity against S. aureus, gram-positive bacteria and it was suggested that the combination with 1,2-hexanediol and glyceryl caprylate was useful to control both gram-positive and gram-negative bacteria when there were four kinds of polyols. This study is meaningful in that it confirmed the antibacterial synergy of the skin conditioning agents with antimicrobial activity and the main raw materials frequently used in cosmetics, thereby contributing to prediction of the antibacterial activity of the skin conditioning agents in cosmetic formulations.

Antibacterial Activity of JiYu-san Against Methicillin-resistant Staphylococcus aureus (Methicillin resistant staphylococcus aureus에 대한 지유산의 항균활성)

  • Hwang, Hae;Kang, Ok-Hwa;Kwon, Dong-Yeul
    • Korean Journal of Pharmacognosy
    • /
    • v.53 no.2
    • /
    • pp.87-95
    • /
    • 2022
  • Methicillin resistance Staphylococcus aureus (MRSA) is a gram-positive bacterium, the most commonly isolated bacterial human pathogen. JiYu-san is one of the natural products used to treat diseases in the folk recipe. In this study, we investigated the antimicrobial activity of EtOH 70% extracts of JiYu-san (JYS) against MRSA. The antibacterial activity of JYS against MRSA strain was evaluated using minimum inhibitory concentration (MIC), checkerboard dilution test, and time-kill assay. The effect of JYS on the immune mechanism of MRSA was confirmed through cell membrane permeability tests and energy metabolism tests, and the antibacterial activity mechanism was performed using qRT-PCR and western blot. As a result, in the antibacterial test of JYS, the MIC was measured to be 1.9~1000 ㎍/mL, and synergistic or showed a partial synergistic effect. In addition, JYS showed antibacterial activity in a combination test with DCCD or TX-100. In a study on the mechanism of action of antibacterial activity, it was found that JYS suppressed MRSA resistance genes and proteins. These results suggest that JYS has antibacterial activity and provides great potential as a natural antibiotic by modulating the immune mechanism against MRSA.

Antibacterial effect of Ishige okamurae extract against cutaneous bacterial pathogens and its synergistic antibacterial effect against Pseudomonas aeruginosa

  • Kim, Bogeum;Kim, Min-Sung;Park, Seul-Ki;Ko, Seok-Chun;Eom, Sung-Hwan;Jung, Won-Kyo;Kim, Young-Mog
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.7
    • /
    • pp.18.1-18.6
    • /
    • 2018
  • Background: Cutaneous bacterial pathogens including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Propionibacterium acnes are often involved in acne vulgaris. The currently available therapeutic option for these skin pathogens is an antibiotic treatment, resulting in the emergence of antibiotic-resistant bacteria. The objective of this study was to discover an alternative antibacterial agent with lower side effect from marine algae. Results: The ethanolic extract of edible brown algae Ishige okamurae exhibits potent antibacterial activity against cutaneous bacterial pathogens. Among the ethanol soluble fractions, the n-hexane (Hexane)-soluble fraction exhibited the strongest antibacterial activity against the pathogens with MIC values ranging 64 to $512{\mu}g/mL$ and with minimum bactericidal concentration values ranging 256 to $2048{\mu}g/mL$. Furthermore, the combination with Hexane fraction and antibiotics (ceftazidime, ciprofloxacin, and meropenem) exhibited synergistic effect. Conclusion: This study revealed that the I. okamurae extract exhibited a synergistic antibacterial effect against acnerelated cutaneous bacterial pathogens acquired antibiotic resistant. Thus, the results of the present study suggested that the edible seaweed extract will be a promising antibacterial therapeutic agent against antibiotic-human skin pathogens and its infections.