DOI QR코드

DOI QR Code

Characterization of Antibacterial Activity and Synergistic Effect of Cationic Antibacterial Peptide-resin Conjugates

  • Kim, Jeong-Min (Bioorganic Chemistry Lab., Department of Chemistry, Inha University) ;
  • Jang, Su-Jung (Bioorganic Chemistry Lab., Department of Chemistry, Inha University) ;
  • Yang, Mi-Hwa (Bioorganic Chemistry Lab., Department of Chemistry, Inha University) ;
  • Cho, Hyeong-Jin (Bioorganic Chemistry Lab., Department of Chemistry, Inha University) ;
  • Lee, Keun-Hyeung (Bioorganic Chemistry Lab., Department of Chemistry, Inha University)
  • Received : 2011.08.13
  • Accepted : 2011.09.07
  • Published : 2011.11.20

Abstract

We synthesized peptide-resin conjugates (1 and 2) by immobilizing ${\beta}$-sheet antibacterial peptide and ${\alpha}$ helical antibacterial peptide on PEG-PS resin, respectively. Conjugate 1 showed considerable antibacterial activity in various conditions, whereas conjugate 2 did not exhibit antibacterial activity. The growths of various bacteria were inhibited by conjugate 1 even at lower concentrations than MIC. Conjugate 1 killed bacteria at MIC and had a potent synergistic effect with current antibacterial agents such as vancomycin and tetracycline, respectively. Overall results indicate that polymer surface modification using antibacterial ${\beta}$ sheet peptide is a powerful way to prevent microbial contamination on polymer surfaces.

Keywords

References

  1. Darouiche, R. O. New Engl. J. Med. 2004, 350, 1422. https://doi.org/10.1056/NEJMra035415
  2. Gilbert, P.; Collier, P. J.; Brown, M. R. W. Antimicrob. Agents Chemother. 1990, 34, 1865. https://doi.org/10.1128/AAC.34.10.1865
  3. Smith, A. W. Adv. Drug. Deliv. Rev. 2005, 57, 1539. https://doi.org/10.1016/j.addr.2005.04.007
  4. Hetrick, E. M.; Schoenfisch, M. H. Chem. Soc. Rev. 2006, 35, 780. https://doi.org/10.1039/b515219b
  5. Endo, Y.; Tany, T.; Kodama, M. Appl. Environ. Microbiol. 1987, 53, 2050.
  6. El-Hayek, R. F.; Dye, K.; Warner, J. C. J. Biomed. Mater. Res. A 2006, 79, 874.
  7. Zasloff, M. Nature 2002, 415, 389. https://doi.org/10.1038/415389a
  8. Epand, R. M.; Vogel, H. J. Biochim. Biophys. Acta 1999, 1462, 11. https://doi.org/10.1016/S0005-2736(99)00198-4
  9. Tossi, A.; Sandri, L.; Giangaspero, A. Curr. Pharm. Design 2002, 8, 743. https://doi.org/10.2174/1381612023395475
  10. Lee, K. H. Curr. Pharm. Design 2002, 8, 795. https://doi.org/10.2174/1381612023395411
  11. Matsuzaki, K. Biochim. Biophys. Acta 1999, 1462, 1. https://doi.org/10.1016/S0005-2736(99)00197-2
  12. Shai, Y. Curr. Pharm. Design 2002, 8, 715. https://doi.org/10.2174/1381612023395367
  13. Hyanie, S. L.; Crum, G. A.; Doele, B. A. Antimicrob. Agents Chemother. 1995, 39, 301. https://doi.org/10.1128/AAC.39.2.301
  14. Etienne, O.; Picart, C.; Taddei, C.; Haikel, Y.; Dimareq, J. L.; Schaaf, P.; Voegel, J. C.; Ogier, J. A.; Egles, C. Antimicrob. Agents Chemother. 2004, 48, 3662. https://doi.org/10.1128/AAC.48.10.3662-3669.2004
  15. Liu, A.; Deshazer, H.; Rice, A. J.; Chen, K.; Zhou, C.; Kallenbach, N. R. J. Med. Chem. 2006, 49, 3436. https://doi.org/10.1021/jm0601452
  16. Tew, G. N.; Liu, D.; Chen, B.; Derksen, R. J.; Kaplan, J.; Carroll, P. J.; Klein, M. L.; DeGrado, W. F. Proc. Natl. Acad. Sci., U.S.A. 2002, 99, 5110. https://doi.org/10.1073/pnas.082046199
  17. Bagheri, M.; Beyermann, M.; Dathe, M. Antimicrob. Agents Chemother. 2009, 53, 1132. https://doi.org/10.1128/AAC.01254-08
  18. Costa, F.; Carvalho, I. F.; Monterlaro, R. C.; Gomes, P.; Cristina, M.; Martins, L. Acta Biomaterialia 2011, 7, 1431. https://doi.org/10.1016/j.actbio.2010.11.005
  19. Cho, W. M.; Joshi, B. P.; Cho, H.; Lee, K. H. Bioorg. Med. Chem. Lett. 2007, 17, 5772. https://doi.org/10.1016/j.bmcl.2007.08.056
  20. Oh, J. E.; Hong, S. U.; Lee, K. H. J. Peptide Res. 1998, 53, 41.
  21. Novabiochem Catalog and Peptide Synthesis Handbook 1998, method 16.
  22. Neelam, S.; Kakhniashivili, D. G.; Wilkens, S.; Levene, S. D.; Goodman, S. R. Exp. Biol. Med. (Maywood) 2011, 236, 580. https://doi.org/10.1258/ebm.2011.010394
  23. Burian, A.; Wagner, C.; Stanek, J.; Manafi, M.; Bohmdorfer, M.; Jager, W.; Zeitlinger, M. J. Antimicrob. Agents 2011, 66, 134. https://doi.org/10.1093/jac/dkq400
  24. Cafini, F.; Aguilar, L.; Gonzalez, N.; Gimenez, M. J.; Torrico, M.; Alou, L.; Sevillano, D.; Vallejo, P.; Prieto, J. J. Antimicrob. Agents 2007, 59, 1185. https://doi.org/10.1093/jac/dkm078
  25. Van Der Vusse, G. J. Drug Metab Pharmacokinet 2009, 24, 300. https://doi.org/10.2133/dmpk.24.300
  26. Maisetta, G.; Di Luca, M.; Esin, S.; Florio, W.; Brancatisano, F. L.; Bottai, D.; Campa, M.; Batoni G. Peptides 2008, 29, 1. https://doi.org/10.1016/j.peptides.2007.10.013
  27. Svenson, J.; Brandsdal, B. O.; Stensen, W.; Svendsen, J. S. J. Med. Chem. 2007, 50, 3334. https://doi.org/10.1021/jm0703542
  28. Mackay, M. L.; Milne, K.; Gould, I. M. Int. J. Antimicrob. Agents 2000, 15, 125. https://doi.org/10.1016/S0924-8579(00)00149-7

Cited by

  1. Design and Application of Antimicrobial Peptide Conjugates vol.17, pp.5, 2016, https://doi.org/10.3390/ijms17050701
  2. Mitochondrial Voltage-Dependent Anion Channel 1-Hexokinase-II Complex-Targeted Strategy for Melanoma Inhibition Using Designed Multiblock Peptide Amphiphiles vol.13, pp.30, 2011, https://doi.org/10.1021/acsami.1c04385
  3. Discovery, Optimization, and Clinical Application of Natural Antimicrobial Peptides vol.9, pp.10, 2021, https://doi.org/10.3390/biomedicines9101381