• Title/Summary/Keyword: synchronous signal

Search Result 320, Processing Time 0.026 seconds

Speed Control of Permanent Magnet Synchronous Motor Using PI Auto-tuning Method (자동동조 Pl 기법을 적용한 영구자석형 동기전동기의 속도 제어)

  • 전인효
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.2
    • /
    • pp.231-239
    • /
    • 1998
  • In this paper, we designed a current controlling servo system for speed control of a PMSM. In existing auto-tuning methods for PI controller parameters, the output response is delayed and the overshoot is generated. By solving these existing problems in this paper, a new PI auto-tuning method is applied to the speed controller for fast-response and reduced overshoot. PMSM servo systems offer a great advantage in unmanned factories where a great number of servo motors are employed, because of its easy maintenance characteristics and controllability. The implemented servo system is composed of absolute position detecting circuits of a rotor, a new auto-tuning PI control algorithm, a speed controller by using DSP, and power driving section. The proposed servo system is verified for it's practical availability by considering experimental results.

  • PDF

A Study on Commercial Frequency Source with High Frequency Resonant Type using ZCS (ZCS를 이용한 고주파 공진형 상용주파수 전원에 관한 연구)

  • Kim, Jong-Hae;Kim, Dong-Hui;No, Chae-Gyun;Gu, Tae-Geun;Bae, Sang-Jun;Lee, Bong-Seop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.8
    • /
    • pp.448-454
    • /
    • 1999
  • This paper describes a new dc-ac inverter system which for achieving sinusoidal ac waveform makes use of parallel loaded high frequency resonant inverter consisting of full bridge. Each one of the pair of switches in the inverter is driven to synchronous output frequency and the other is driven to PWM signal with resonant frequency proportional to magnitude of sine wave. A forced discontinuous conduction mode is used to realize the quasi-sinusoidal pulse in each switching period. Therefore the inverter generates sinusoidal modulated output voltage including carrier frequency that is resonant frequency. Carrier frequency components of modulated output voltage is filtered by low pass filter. Since current through switches is always zero at its turn-on in the proposed inverter, low stress and low switching loss is achieved. Operating characteristics of the proposed system is analyzed in per unit system using computer simulation. The output voltage of if includes low harmonics and it is almost close to sine wave. Also, the theoretical analysis is proved through the experimental test.

  • PDF

A Study on starting Characteristics Improvement of Sensorless BLDC Motor (센서리스 구동 브러시리스 DC 모터의 기동 특성 개선에 관한 연구)

  • Hong, Sun-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.5
    • /
    • pp.54-59
    • /
    • 2005
  • Brushless DC motor is a motor which is modified form DC brush motor and it does not have brushes. BLDCM is easy to centre, has wide speed range, high efficiency. However it needs speed sensor like encoder which increases the motor price and cause some faults in poor surroundings.. In this paper, for the sensorless control, the driving techniques for the initial stable start and the steady state are studied For the steady state the rotor position is determined using the measured back-EMF. To enhance the initial stating performance, the current signal from the free-wheeling diode is used. The results are conformed through the experiments.

Robust Tracking Control Based on Intelligent Sliding-Mode Model-Following Position Controllers for PMSM Servo Drives

  • El-Sousy Fayez F.M.
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.159-173
    • /
    • 2007
  • In this paper, an intelligent sliding-mode position controller (ISMC) for achieving favorable decoupling control and high precision position tracking performance of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The intelligent position controller consists of a sliding-mode position controller (SMC) in the position feed-back loop in addition to an on-line trained fuzzy-neural-network model-following controller (FNNMFC) in the feedforward loop. The intelligent position controller combines the merits of the SMC with robust characteristics and the FNNMFC with on-line learning ability for periodic command tracking of a PMSM servo drive. The theoretical analyses of the sliding-mode position controller are described with a second order switching surface (PID) which is insensitive to parameter uncertainties and external load disturbances. To realize high dynamic performance in disturbance rejection and tracking characteristics, an on-line trained FNNMFC is proposed. The connective weights and membership functions of the FNNMFC are trained on-line according to the model-following error between the outputs of the reference model and the PMSM servo drive system. The FNNMFC generates an adaptive control signal which is added to the SMC output to attain robust model-following characteristics under different operating conditions regardless of parameter uncertainties and load disturbances. A computer simulation is developed to demonstrate the effectiveness of the proposed intelligent sliding mode position controller. The results confirm that the proposed ISMC grants robust performance and precise response to the reference model regardless of load disturbances and PMSM parameter uncertainties.

Experimental Study on the Characteristics of the Pad Fluttering in a Tilting Pad Journal Bearing (틸팅패드 저어널베어링의 패드 Fluttering 특성에 관한 실험적 연구)

  • 양승헌;하현천;김재실
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.228-234
    • /
    • 2000
  • The vibration characteristics of the pad fluttering in a fluid film tilting pad journal bearing(4-pad LBP) have been investigated experimentally under the different values of oil supply flow rate, bearing load and shaft speed. The vibration characteristics of the pad fluttering are estimated by measuring the time signal of circumferential distribution of the film thickness and the cascade plot of the response of the relative displacement between the bearing and the shaft. It is shown that the vibration frequency of the pad fluttering has a sub-synchronous frequency and 31mos1 does not change by the increase of shaft speed. However the vibration amplitude is increased by the increase of shaft speed. From those experimental results, pad fluttering can be thought of as a self-excited vibration. The incipient pad fluttering velocity is increased by the increase of oil supply rate and by the decrease of bearing load. It is observed that the vibration amplitude of the pad fluttering can be decreased by the control of supply oil flow rate effectively. And also It is known that the outbreak of pad fluttering does not concern with the shaft vibration.

  • PDF

Development of a Reference-Pulse Type 3-Axis Simultaneously Controlled PC-NC Milling System (Reference-Pulse 방식 3축 동시제어 PC-NC 밀링 시스템 개발에 관한 연구)

  • Yang, Min-Yang;Hong, Won-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.197-203
    • /
    • 1999
  • Increasing demands on precision machining have necessitated the tool to move not only position error as small as possible, but also with smoothly varying feedrates. Because of the lack of accurate and efficient algorithms for generation of 3-dimensional lines and circles, a full accomlishment for available machine tool resolution is generally unavailable. In this paper, a reference-pulse type 3-axis PC_NC milling system is developed for the precision machining of complex shapes in 3-dimensional space. Three AC servomotors are used as the actuator instead of the hand wheel to operate a 3-axis milling machine under the same mechanical structure. A PC is used to handle the control signal calculation for various types of motion command. To achieve the synchronous 3-axis motion, a real-time reference-pulse 3-dimensional linear and circular interpolator based on the intersection criteria is developed in software. The performance test via computer simulation and actual machining have shown that the PC-NC milling system is useful for the machining of arbitrary lines and circles in 3-dimensional space.

  • PDF

A Design Of Active Vibration Control System For Precise Maglev Stage (초정밀 자기부상 스테이지용 능동진동제어시스템 설계)

  • Lee, Joo-Hoon;Kim, Yong-Joo;Son, Sung-Wan;Lee, Hong-Ki;Lee, Se-Han;Choi, Young-Kiu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.121-124
    • /
    • 2004
  • In this paper, we address an active vibration control system, which suppresses the vibration engaged by magnetically levitated stage. The stage system consists of a levitating platen with four permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force fer suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion via the vertical and horizontal forces. In the stage system, which represents the settling-time critical system. the motion of the platen vibrates mechanically. We designed an active vibration control system for suppressing vibration due to the stage moving. The command feedforward with inertial feedback algorithm is used fer solving stage system's critical problems. The components of the active vibration control system are accelerometers for detecting stage table's vibrations, a digital controller with high precise signal converters, and electromagnetic actuators.

  • PDF

Modelling and Performance Analysis of UPQC with Digital Kalman Control Algorithm under Unbalanced Distorted Source Voltage conditions

  • Kumar, Venkateshv;Ramachandran, Rajeswari
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1830-1843
    • /
    • 2018
  • In this paper, the generation of a reference current and voltage signal based on a Kalman filter is offered for a 3-phase 4wire UPQC (Unified Power Quality Conditioner). The performance of the UPQC is improved with source voltages that are distorted due to harmonic components. Despite harmonic and frequency variations, the Kalman filter is capable enough to determine the amplitude and the phase angle of load currents and source voltages. The calculation of the first state is sufficient to identify the fundamental components of the current, voltage and angle. Therefore, the Kalman state estimator is fast and simple. A Kalman based control strategy is proposed and implemented for a UPQC in a distribution system. The performance of the proposed control strategy is assessed for all possible source conditions with varying nonlinear and linear loads. The functioning of the proposed control algorithm with a UPQC is scrutinized and validated through simulations employing MATLAB/Simulink software. Using a FPGA SPATRAN 3A DSP board, the proposed algorithm is developed and implemented. A small-scale laboratory prototype is built to verify the simulation results. The stated control scheme for the UPQC reduces the following issues, voltage sags, voltage swells, harmonic distortions (voltage and current), unbalanced supply voltage and unbalanced power factor under dynamic and steady-state operating conditions.

Voltage-Frequency-Island Aware Energy Optimization Methodology for Network-on-Chip Design (전압-주파수-구역을 고려한 에너지 최적화 네트워크-온-칩 설계 방법론)

  • Kim, Woo-Joong;Kwon, Soon-Tae;Shin, Dong-Kun;Han, Tae-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.8
    • /
    • pp.22-30
    • /
    • 2009
  • Due to high levels of integration and complexity, the Network-on-Chip (NoC) approach has emerged as a new design paradigm to overcome on-chip communication issues and data bandwidth limits in conventional SoC(System-on-Chip) design. In particular, exponentially growing of energy consumption caused by high frequency, synchronization and distributing a single global clock signal throughout the chip have become major design bottlenecks. To deal with these issues, a globally asynchronous, locally synchronous (GALS) design combined with low power techniques is considered. Such a design style fits nicely with the concept of voltage-frequency-islands (VFI) which has been recently introduced for achieving fine-grain system-level power management. In this paper, we propose an efficient design methodology that minimizes energy consumption by VFI partitioning on an NoC architecture as well as assigning supply and threshold voltage levels to each VFI. The proposed algorithm which find VFI and appropriate core (or processing element) supply voltage consists of traffic-aware core graph partitioning, communication contention delay-aware tile mapping, power variation-aware core dynamic voltage scaling (DVS), power efficient VFI merging and voltage update on the VFIs Simulation results show that average 10.3% improvement in energy consumption compared to other existing works.

A Low-power EEPROM design for UHF RFID tag chip (UHF RFID 태그 칩용 저전력 EEPROM설계)

  • Yi, Won-Jae;Lee, Jae-Hyung;Park, Kyung-Hwan;Lee, Jung-Hwan;Lim, Gyu-Ho;Kang, Hyung-Geun;Ko, Bong-Jin;Park, Mu-Hun;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.486-495
    • /
    • 2006
  • In this paper, a low-power 1Kb synchronous EEPROM is designed with flash cells for passive UHF RFID tag chips. To make a low-power EEPROM, four techniques are newly proposed. Firstly, dual power supply voltages VDD(1.5V) and VDDP(2.5V), are used. Secondly, CKE signal is used to remove switching current due to clocking of synchronous circuits. Thirdly, a low-speed but low-power sensing scheme using clocked inverters is used instead of the conventional current sensing method. Lastly, the low-voltage, VDD for the reference voltage generator is supplied by using the Voltage-up converter in write cycle. An EEPROM is fabricated with the $0.25{\mu}m$ EEPROM process. Simulation results show that power dissipations are $4.25{\mu}W$ in the read cycle and $25{\mu}W$ in the write cycle, respectively. The layout area is $646.3\times657.68{\mu}m^2$.