• Title/Summary/Keyword: synchronized multiplexing

Search Result 12, Processing Time 0.022 seconds

An Input/Output Technology for 3-Dimensional Moving Image Processing (3차원 동영상 정보처리용 영상 입출력 기술)

  • Son, Jung-Young;Chun, You-Seek
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.8
    • /
    • pp.1-11
    • /
    • 1998
  • One of the desired features for the realizations of high quality Information and Telecommunication services in future is "the Sensation of Reality". This will be achieved only with the visual communication based on the 3- dimensional (3-D) moving images. The main difficulties in realizing 3-D moving image communication are that there is no developed data transmission technology for the hugh amount of data involved in 3-D images and no established technologies for 3-D image recording and displaying in real time. The currently known stereoscopic imaging technologies can only present depth, no moving parallax, so they are not effective in creating the sensation of the reality without taking eye glasses. The more effective 3-D imaging technologies for achieving the sensation of reality are those based on the multiview 3-D images which provides the object image changes as the eyes move to different directions. In this paper, a multiview 3-D imaging system composed of 8 CCD cameras in a case, a RGB(Red, Green, Blue) beam projector, and a holographic screen is introduced. In this system, the 8 view images are recorded by the 8 CCD cameras and the images are transmitted to the beam projector in sequence by a signal converter. This signal converter converts each camera signal into 3 different color signals, i.e., RGB signals, combines each color signal from the 8 cameras into a serial signal train by multiplexing and drives the corresponding color channel of the beam projector to 480Hz frame rate. The beam projector projects images to the holographic screen through a LCD shutter. The LCD shutter consists of 8 LCD strips. The image of each LCD strip, created by the holographic screen, forms as sub-viewing zone. Since the ON period and sequence of the LCD strips are synchronized with those of the camera image sampling adn the beam projector image projection, the multiview 3-D moving images are viewed at the viewing zone.

  • PDF

Design and Implementation of the Higher-quality Terrestrial 3DTV Broadcasting Standard Specification Based on Synchronization with Non-Real-Time Contents (고화질 스테레오스코픽 영상 서비스를 위한 비실시간 콘텐츠 연동 지상파 3DTV 방송 표준규격 설계 및 검증)

  • Lee, Jangwon;Kim, Kyuheon;Yim, Hyun-Jeong;Cheong, Won-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.12
    • /
    • pp.1185-1194
    • /
    • 2012
  • This paper proposes a new terrestrial 3DTV broadcasting standard specification based on synchronization with non-real-time contents in order to overcome quality limitations of the current 3DTV services that are arisen from the limited bandwidth of the legacy broadcasting channel. In the services using the proposed specification, one view sequence of a stereoscopic video content is delivered as a non-real-time content in idle time, and the other view sequence is transmitted in real time broadcasting signal, thereafter two sequences are synchronized in a receiver for display. Thus, it is possible to provide higher-quality stereoscopic video content services than the current 3DTV services. In order to realize these services, a new mechanism is required which enables synchronization between the data that are from different transmission media and time. Therefore, this paper suggests a solution by multiplexing the synchronization signals of non-real-time contents into broadcasting signals with real-time streams together. This solution can provide a accurate synchronization mechanism by minimum updates of legacy broadcasting systems while maintaining compatibility with legacy services.