• Title/Summary/Keyword: synapse

Search Result 176, Processing Time 0.025 seconds

Actin Engine in Immunological Synapse

  • Piragyte, Indre;Jun, Chang-Duk
    • IMMUNE NETWORK
    • /
    • v.12 no.3
    • /
    • pp.71-83
    • /
    • 2012
  • T cell activation and function require physical contact with antigen presenting cells at a specialized junctional structure known as the immunological synapse. Once formed, the immunological synapse leads to sustained T cell receptor-mediated signalling and stabilized adhesion. High resolution microscopy indeed had a great impact in understanding the function and dynamic structure of immunological synapse. Trends of recent research are now moving towards understanding the mechanical part of immune system, expanding our knowledge in mechanosensitivity, force generation, and biophysics of cell-cell interaction. Actin cytoskeleton plays inevitable role in adaptive immune system, allowing it to bear dynamic and precise characteristics at the same time. The regulation of mechanical engine seems very complicated and overlapping, but it enables cells to be very sensitive to external signals such as surface rigidity. In this review, we focus on actin regulators and how immune cells regulate dynamic actin rearrangement process to drive the formation of immunological synapse.

A Study on the Linearity Synapse Transistor of Analog Memory Devices in Self Learning Neural Network Integrated Circuits (자기인지 신경회로망에서 아날로그 기억소자의 선형 시냅스 트랜지스터에 관한연구)

  • 강창수
    • Electrical & Electronic Materials
    • /
    • v.10 no.8
    • /
    • pp.783-793
    • /
    • 1997
  • A VLSI implementation of a self-learning neural network integrated circuits using a linearity synapse transistor is investigated. The thickness dependence of oxide current density stress current transient current and channel current has been measured in oxides with thicknesses between 41 and 112 $\AA$, which have the channel width $\times$ length 10 $\times$1${\mu}{\textrm}{m}$, 10 $\times$ 0.3${\mu}{\textrm}{m}$ respectively. The transient current will affect data retention in synapse transistors and the stress current is used to estimate to fundamental limitations on oxide thicknesses. The synapse transistor has represented the neural states and the manipulation which gaves unipolar weights. The weight value of synapse transistor was caused by the bias conditions. Excitatory state and inhitory state according to weighted values affected the drain source current.

  • PDF

A Study on the Synaptic Characteristics of SONOS memories for the Artificial Neural Networks (인공신경망을 위한 SONOS 기억소자의 시냅스특성에 관한 연구)

  • 이성배;김주연;서광열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.1
    • /
    • pp.7-11
    • /
    • 1998
  • In this paper, a new synapse cell with nonvolatile SONOS semiconductor memory device is proposed and it's fundamental function electronically implemented SONOS NVSM has shown characteristics that the memory value, synaptic weights, can be increased or decreased incrementally. A novel SONOS synapse is used to read out the stored analog value. For the purpose of synapse implementation using SONOS NVSM, this work has investigated multiplying characteristics including weight updating characteristics and neuron output characteristics. It is concluded that SONOS synapse cell has good agreement for use as a synapse in artificial neural networks.

  • PDF

A Study on the Linearity Synapse Transistor in Self Learning Neural Network (자기인지 신경회로망에서 선형 시냅스 트랜지스터에 관한 연구)

  • 강창수;김동진;김영호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.59-62
    • /
    • 2000
  • A VLSI implementation of a self-learning neural network integrated circuits using a linearity synapse transistor is investigated. The thickness dependence of oxide current density, stress current, transient current and channel current has been measured in oxides with thicknesses between 41 and 112 $\AA$, which have the channel width$\times$length 10$\times$1${\mu}{\textrm}{m}$ respectively. The transient current will affect data retention in synapse transistors and the stress current is used to estimate to fundamental limitations on oxide thicknesses. The synapse transistor has represented the neural states and the manipulation which gave unipolar weights. The weight value of synapse transistor was caused by the bias conditions. Excitatory state and inhitory state according to weighted values affected the drain source current.

  • PDF

Ultrastructural Pattern of Synapses in the Rat Neostriatum during Postnatal Development (출생후 성장과정의 흰쥐 새줄무늬체에서 신경연접의 구조적 변동)

  • Lee, Hee-Lai
    • Applied Microscopy
    • /
    • v.25 no.4
    • /
    • pp.1-8
    • /
    • 1995
  • This study was performed to analyze the morphological changes of synapses during early postnatal periods. Neonatal rats were grouped by 3, 7, 14, 21, 28 and 42day old, and observed the ultrastructural pattern of the synapses in the neostriatum by transmission electron microscope. 1. The number of synapse, the length of postsynaptic thickening and the amount of synaptic vesicles markedly increase during postnatal development 2. The proportion of asymmetric and curved synapses gradually increase by developmental periods. From the above results, it is suggested that the size of synapse increase during post-natal period, and asymmetric synapse are formed from the symmetric type and curved synapse are formed from the plane type.

  • PDF

Silver Impregnation and Electron Microscopic Studies on the Synapse in the Visual Cortex of Rat during Postnatal Development (성장기 흰쥐 시각피질의 신경연접에 대한 도은법 및 전자현미경적 연구)

  • Lee, Hee-Lai
    • Applied Microscopy
    • /
    • v.27 no.4
    • /
    • pp.347-355
    • /
    • 1997
  • These studies were performed to observe the morphological changes of synapses in the visual cortex of rat during early postnatal development. Specimens of the visual cortex were taken from rats (Sprague Dawley) at 1, 3, 7, 14 and 21 days of age, and prepared for silver impregnation and electron microscopy. The number of synapse and the length of postsynaptic thickening were increased progressively with age, especially 14 and 21 days. The number of dendritic spine was increased conspicuously on postnatal days 14-21. And asymmetic, curved and axo-spinous synapses were increased markedly at the same ages. The present findings suggest that spurt of synaptogenesis in the rat visual cortex occurs during early postnatal development, especially in second to 3rd week period and asymmetric and/or curved axo-spinous synapse is a matured form of synapse with advanced age.

  • PDF

TAGLN2-mediated actin stabilization at the immunological synapse: implication for cytotoxic T cell control of target cells

  • Na, Bo-Ra;Jun, Chang-Duk
    • BMB Reports
    • /
    • v.48 no.7
    • /
    • pp.369-370
    • /
    • 2015
  • Actin dynamics is critical for the formation and sustainment of the immunological synapse (IS) during T cell interaction with antigen-presenting cells (APC). Thus, many actin regulating proteins are involved in spatial and temporal actin remodeling at the IS. However, little is known whether or how actin stabilizing protein controls IS and the consequent T cell functions. TAGLN2 − an actin-binding protein predominantly expressed in T cells − displays a novel function to stabilize cortical F-actin, thereby augmenting F-actin contents at the IS, and acquiring leukocyte function-associated antigen-1 activation following T cell activation. TAGLN2 also competes with cofilin to protect F-actin in vitro and in vivo. During cytotoxic T cell interaction with cancer cells, the expression level of TAGLN2 at the IS correlates with the T cell adhesion to target cancer cells and production of lytic granules such as granzyme B and perforin, thus expressing cytotoxic T cell function. These findings identify a novel function for TAGLN2 as an actin stabilizing protein that is essential for stable immunological synapse formation, thereby regulating T cell immunity. [BMB Reports 2015; 48(7): 369-370]

Differential synapse density between Purkinje cell dendritic spine and parallel fiber varicosity in the rat cerebellum among the phylogenic lobules

  • Hyun-Wook Kim;Seung Hak Oh;Se Jeong Lee;Ji eun Na;Im Joo Rhyu
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.6.1-6.6
    • /
    • 2020
  • The cerebellum is a region of the brain that plays an important role in motor control. It is classified phylogenetically into archicerebellum, paleocerebellum and neocerebellum. The Purkinje cells are lined in a row called Purkinje cell layer and it has a unique dendritic branches with many spines. The previous study reported that there is a difference of synapse density according to the lobules based on large two-dimensional data. However, recent study with high voltage electron microscopy showed there was no differences in dendritic spine density of the Purkinje cell according to its phylogenetic lobule. We analyzed Purkinje cell density in the II, VI and X lobules by stereological modules and synaptic density was estimated by double disector based on Purkinje cell density in the molecular layer of each lobule. The results showed that there was significant difference in the Purkinje cell density and synapse number according to their phylogenetic lobules. The number of Purkinje cell in a given volume was larger in the archicerebellum, but synapse density was higher in the neocerebellum. These data suggest that cellular and synaptic organization of the Purkinje cell is different according to their phylogenetic background.

The Characteristics of Silicon Oxides for Artificial Neural Network Design (인공신경회로망 설계를 위한 실리콘 산화막 특성)

  • Kang, C.S.
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.475-476
    • /
    • 2007
  • The stress induced leakage currents will affect data retention in synapse transistors and the stress current, transient current is used to estimate to fundamental limitations on oxide thicknesses. The synapse transistor made by thin silicon oxides has represented the neural states and the manipulation which gaves unipolar weights. The weight value of synapse transistor was caused by the bias conditions. Excitatory state and inhibitory state according to weighted values affected the channel current. The stress induced leakage currents affected excitatory state and inhibitory state.

  • PDF

The Oxide Characteristics in Flash EEPROM Applications (플래시 EEPROM 응용을 위한 산화막 특성)

  • 강창수;김동진;강기성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.855-858
    • /
    • 2001
  • The stress induced leakage currents of thin silicon oxides is investigated in the VLSI implementation of a self learning neural network integrated circuits using a linearity synapse transistor. The channel current for the thickness dependence of stress current, transient current, and stress induced leakage currents has been measured in oxides with thicknesses between 41 ${\AA}$, 86${\AA}$, which have the channel width ${\times}$ length 10 ${\times}$1${\mu}$m, 10 ${\times}$0.3${\mu}$m respectively. The stress induced leakage currents will affect data retention in synapse transistors and the stress current, transient current is used to estimate to fundamental limitations on oxide thicknesses. The synapse transistor made by thin silicon oxides has represented the neural states and the manipulation which gaves unipolar weights. The weight value of synapse transistor was caused by the bias conditions. Excitatory state and inhitory state according to weighted values affected the channel current. The stress induced leakage currents affected excitatory state and inhitory state.

  • PDF