• Title/Summary/Keyword: symplectic groups

Search Result 8, Processing Time 0.023 seconds

IDENTITIES ARISING FROM GAUSS SUMS FOR SYMPLECTIC AND ORTHOGONAL GROUPS

  • Chae, Hi-Joon;Kim, Dae-San
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.409-424
    • /
    • 2010
  • We express Gauss sums for symplectic and orthogonal groups over finite fields as averages of exponential sums over certain maximal tori. Together with our previous results, we obtain some interesting identities involving various classical Gauss and Kloosterman sums.

Smooth structures on symplectic 4-manifolds with finite fundamental groups

  • Cho, Yong-Seung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.619-629
    • /
    • 1996
  • In studying smooth 4-manifolds the Donaldson invariant has played a central role. In [D1] Donaldson showed that non-vanishing Donaldson invariant of a smooth closed oriented 4-manifold X gives rise to the indecomposability of X. For instance, the complex algebraic suface X cannot decompose to a connected sum $X_1 #X_2$ with both $b_2^+(X_i) > 0$.

  • PDF

Monodromy Groups on Knot Surgery 4-manifolds

  • Yun, Ki-Heon
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.4
    • /
    • pp.603-614
    • /
    • 2013
  • In the article we show that nondieomorphic symplectic 4-manifolds which admit marked Lefschetz fibrations can share the same monodromy group. Explicitly we prove that, for each integer g > 0, every knot surgery 4-manifold in a family {$E(2)_K{\mid}K$ is a bered 2-bridge knot of genus g in $S^3$} admits a marked Lefschetz fibration structure which has the same monodromy group.

REGULARIZED ELSENSTELN SERIES ON METAPLECTIC GROUPS

  • Park, Young-Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.4
    • /
    • pp.783-796
    • /
    • 1994
  • Let V be a vector space of dimension m over Q, and let (, ) be a non-degenerate bilinear form on V. Let r be the Witt index of V, and let $V = V' + V_0 + V"$ be the Witt decomposition, where $V_0$ is anisotropic and V', V" are paired non-singularly. Let H = O(m-r, r) be the isometry group of V, (, ), viewed as an algebraic group over Q. Let G = Sp(n) be the symplectic group of rank n defined over Q.ed over Q.

  • PDF

MODULAR INVARIANTS UNDER THE ACTIONS OF SOME REFLECTION GROUPS RELATED TO WEYL GROUPS

  • Ishiguro, Kenshi;Koba, Takahiro;Miyauchi, Toshiyuki;Takigawa, Erika
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.207-218
    • /
    • 2020
  • Some modular representations of reflection groups related to Weyl groups are considered. The rational cohomology of the classifying space of a compact connected Lie group G with a maximal torus T is expressed as the ring of invariants, H*(BG; ℚ) ≅ H*(BT; ℚ)W(G), which is a polynomial ring. If such Lie groups are locally isomorphic, the rational representations of their Weyl groups are equivalent. However, the integral representations need not be equivalent. Under the mod p reductions, we consider the structure of the rings, particularly for the Weyl group of symplectic groups Sp(n) and for the alternating groups An as the subgroup of W(SU(n)). We will ask if such rings of invariants are polynomial rings, and if each of them can be realized as the mod p cohomology of a space. For n = 3, 4, the rings under a conjugate of W(Sp(n)) are shown to be polynomial, and for n = 6, 8, they are non-polynomial. The structures of H*(BTn-1; 𝔽p)An will be also discussed for n = 3, 4.