• 제목/요약/키워드: symmetric subset

검색결과 16건 처리시간 0.017초

SPHERES IN THE SHILOV BOUNDARIES OF BOUNDED SYMMETRIC DOMAINS

  • Kim, Sung-Yeon
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제22권1호
    • /
    • pp.35-56
    • /
    • 2015
  • In this paper, we classify all nonconstant smooth CR maps from a sphere $S_{n,1}{\subset}\mathbb{C}^n$ with n > 3 to the Shilov boundary $S_{p,q}{\subset}\mathbb{C}^{p{\times}q}$ of a bounded symmetric domain of Cartan type I under the condition that p - q < 3n - 4. We show that they are either linear maps up to automorphisms of $S_{n,1}$ and $S_{p,q}$ or D'Angelo maps. This is the first classification of CR maps into the Shilov boundary of bounded symmetric domains other than sphere that includes nonlinear maps.

SPECIAL WEAK PROPERTIES OF GENERALIZED POWER SERIES RINGS

  • Ouyang, Lunqun
    • 대한수학회지
    • /
    • 제49권4호
    • /
    • pp.687-701
    • /
    • 2012
  • Let $R$ be a ring and $nil(R)$ the set of all nilpotent elements of $R$. For a subset $X$ of a ring $R$, we define $N_R(X)=\{a{\in}R{\mid}xa{\in}nil(R)$ for all $x{\in}X$}, which is called a weak annihilator of $X$ in $R$. $A$ ring $R$ is called weak zip provided that for any subset $X$ of $R$, if $N_R(Y){\subseteq}nil(R)$, then there exists a finite subset $Y{\subseteq}X$ such that $N_R(Y){\subseteq}nil(R)$, and a ring $R$ is called weak symmetric if $abc{\in}nil(R){\Rightarrow}acb{\in}nil(R)$ for all a, b, $c{\in}R$. It is shown that a generalized power series ring $[[R^{S,{\leq}}]]$ is weak zip (resp. weak symmetric) if and only if $R$ is weak zip (resp. weak symmetric) under some additional conditions. Also we describe all weak associated primes of the generalized power series ring $[[R^{S,{\leq}}]]$ in terms of all weak associated primes of $R$ in a very straightforward way.

MINIMAL GRAPHS WITH PLANAR ENDS

  • Jin, Sun Sook
    • 충청수학회지
    • /
    • 제24권2호
    • /
    • pp.313-317
    • /
    • 2011
  • In this article, we consider an unbounded minimal graph $M{\subset}R^3$ which is contained in a slab. Assume that ${\partial}M$ consists of two Jordan curves lying in parallel planes, which is symmetric with the reflection under a plane. If the asymptotic behavior of M is also symmetric in some sense, then we prove that the minimal graph is itself symmetric along the same plane.

ON DIFFERENTIAL INVARIANTS OF HYPERPLANE SYSTEMS ON NONDEGENERATE EQUIVARIANT EMBEDDINGS OF HOMOGENEOUS SPACES

  • HONG, JAEHYUN
    • 대한수학회논문집
    • /
    • 제30권3호
    • /
    • pp.253-267
    • /
    • 2015
  • Given a complex submanifoldM of the projective space $\mathbb{P}$(T), the hyperplane system R on M characterizes the projective embedding of M into $\mathbb{P}$(T) in the following sense: for any two nondegenerate complex submanifolds $M{\subset}\mathbb{P}$(T) and $M^{\prime}{\subset}\mathbb{P}$(T'), there is a projective linear transformation that sends an open subset of M onto an open subset of M' if and only if (M,R) is locally equivalent to (M', R'). Se-ashi developed a theory for the differential invariants of these types of systems of linear differential equations. In particular, the theory applies to systems of linear differential equations that have symbols equivalent to the hyperplane systems on nondegenerate equivariant embeddings of compact Hermitian symmetric spaces. In this paper, we extend this result to hyperplane systems on nondegenerate equivariant embeddings of homogeneous spaces of the first kind.

ModifiedFAST: A New Optimal Feature Subset Selection Algorithm

  • Nagpal, Arpita;Gaur, Deepti
    • Journal of information and communication convergence engineering
    • /
    • 제13권2호
    • /
    • pp.113-122
    • /
    • 2015
  • Feature subset selection is as a pre-processing step in learning algorithms. In this paper, we propose an efficient algorithm, ModifiedFAST, for feature subset selection. This algorithm is suitable for text datasets, and uses the concept of information gain to remove irrelevant and redundant features. A new optimal value of the threshold for symmetric uncertainty, used to identify relevant features, is found. The thresholds used by previous feature selection algorithms such as FAST, Relief, and CFS were not optimal. It has been proven that the threshold value greatly affects the percentage of selected features and the classification accuracy. A new performance unified metric that combines accuracy and the number of features selected has been proposed and applied in the proposed algorithm. It was experimentally shown that the percentage of selected features obtained by the proposed algorithm was lower than that obtained using existing algorithms in most of the datasets. The effectiveness of our algorithm on the optimal threshold was statistically validated with other algorithms.

NOTES ON CARLESON TYPE MEASURES ON BOUNDED SYMMETRIC DOMAIN

  • Choi, Ki-Seong
    • 대한수학회논문집
    • /
    • 제22권1호
    • /
    • pp.65-74
    • /
    • 2007
  • Suppose that $\mu$ is a finite positive Borel measure on bounded symmetric domain $\Omega{\subset}\mathbb{C}^n\;and\;\nu$ is the Euclidean volume measure such that $\nu(\Omega)=1$. Suppose 1 < p < $\infty$ and r > 0. In this paper, we will show that the norms $sup\{\int_\Omega{\mid}k_z(w)\mid^2d\mu(w)\;:\;z\in\Omega\}$, $sup\{\int_\Omega{\mid}h(w)\mid^pd\mu(w)/\int_\Omega{\mid}h(w)^pd\nu(w)\;:\;h{\in}L_a^p(\Omega,d\nu),\;h\neq0\}$ and $$sup\{\frac{\mu(E(z,r))}{\nu(E(z,r))}\;:\;z\in\Omega\}$$ are are all equivalent. We will also show that the inclusion mapping $ip\;:\;L_a^p(\Omega,d\nu){\rightarrow}L^p(\Omega,d\mu)$ is compact if and only if lim $w\rightarrow\partial\Omega\frac{\mu(E(w,r))}{\nu(E(w,r))}=0$.

HEXAVALENT NORMAL EDGE-TRANSITIVE CAYLEY GRAPHS OF ORDER A PRODUCT OF THREE PRIMES

  • GHORBANI, MODJTABA;SONGHORI, MAHIN
    • Journal of applied mathematics & informatics
    • /
    • 제35권1_2호
    • /
    • pp.83-93
    • /
    • 2017
  • The Cayley graph ${\Gamma}=Cay(G,S)$ is called normal edge-transitive if $N_A(R(G))$ acts transitively on the set of edges of ${\Gamma}$, where $A=Aut({\Gamma})$ and R(G) is the regular subgroup of A. In this paper, we determine all hexavalent normal edge-transitive Cayley graphs on groups of order pqr, where p > q > r > 2 are prime numbers.

SOME PROPERTIES OF TOEPLITZ OPERATORS WITH SYMBOL μ

  • Kang, Si Ho
    • 충청수학회지
    • /
    • 제23권3호
    • /
    • pp.471-479
    • /
    • 2010
  • For a complex regular Borel measure ${\mu}$ on ${\Omega}$ which is a subset of ${\mathbb{C}}^k$, where k is a positive integer we define the Toeplitz operator $T_{\mu}$ on a reproducing analytic space which comtains polynomials. Using every symmetric polynomial is a polynomial of elementary polynomials, we show that if $T_{\mu}$ has finite rank then ${\mu}$ is a finite linear combination of point masses.

Envelope empirical likelihood ratio for the difference of two location parameters with constraints of symmetry

  • Kim, Kyoung-Mi;Zhou, Mai
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2002년도 춘계학술대회
    • /
    • pp.51-73
    • /
    • 2002
  • Empirical likelihood ratio method is a new technique in nonparametric inference developed by A. Owen (1988, 2001). Sometimes empirical likelihood has difficulties to define itself. As such a case in point, we discuss the way to define a modified empirical likelihood for the location of symmetry using well-known points of symmetry as a side conditions. The side condition of symmetry is defined through a finite subset of the infinite set of constraints. The modified empirical likelihood under symmetry studied in this paper is to construct a constrained parameter space $\theta+$ of distributions imposing known symmetry as side information. We show that the usual asymptotic theory (Wilks theorem) still hold for the empirical likelihood ratio on the constrained parameter space and the asymptotic distribution of the empirical NPMLE of difference of two symmetric points is obtained.

  • PDF