• Title/Summary/Keyword: symmetric element

Search Result 434, Processing Time 0.028 seconds

An alternative evaluation of the LTB behavior of mono-symmetric beam-columns

  • Yilmaz, Tolga;Kirac, Nevzat;Anil, O zgur
    • Steel and Composite Structures
    • /
    • v.30 no.5
    • /
    • pp.471-481
    • /
    • 2019
  • Beam-columns are structural members subjected to a combination of axial and bending forces. Lateral-torsional buckling is one of the main failure modes. Beam-columns that are bent about its strong axis may buckle out of the plane by deflecting laterally and twisting as the values of the applied loads reach a limiting state. Lateral-torsional buckling failure occurs suddenly in beam-column elements with a much greater in-plane bending stiffness than torsional or lateral bending stiffness. This study intends to establish a unique convenient closed-form equation that it can be used for calculating critical elastic lateral-torsional buckling load of beam-column in the presence of a known axial load. The presented equation includes first order bending distribution, the position of the loads acting transversely on the beam-column and mono-symmetry property of the section. Effects of axial loads, slenderness and load positions on lateral torsional buckling behavior of beam-columns are investigated. The proposed solutions are compared to finite element simulations where thin-walled shell elements including warping are used. Good agreement between the analytical and the numerical solutions is demonstrated. It is found out that the lateral-torsional buckling load of beam-columns with mono-symmetric sections can be determined by the presented equation and can be safely used in design procedures.

ON THE STRUCTURE OF ZERO-DIVISOR ELEMENTS IN A NEAR-RING OF SKEW FORMAL POWER SERIES

  • Alhevaz, Abdollah;Hashemi, Ebrahim;Shokuhifar, Fatemeh
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.197-207
    • /
    • 2021
  • The main purpose of this paper is to study the zero-divisor properties of the zero-symmetric near-ring of skew formal power series R0[[x; α]], where R is a symmetric, α-compatible and right Noetherian ring. It is shown that if R is reduced, then the set of all zero-divisor elements of R0[[x; α]] forms an ideal of R0[[x; α]] if and only if Z(R) is an ideal of R. Also, if R is a non-reduced ring and annR(a - b) ∩ Nil(R) ≠ 0 for each a, b ∈ Z(R), then Z(R0[[x; α]]) is an ideal of R0[[x; α]]. Moreover, if R is a non-reduced right Noetherian ring and Z(R0[[x; α]]) forms an ideal, then annR(a - b) ∩ Nil(R) ≠ 0 for each a, b ∈ Z(R). Also, it is proved that the only possible diameters of the zero-divisor graph of R0[[x; α]] is 2 and 3.

Development of a 2D isoparametric finite element model based on the layerwise approach for the bending analysis of sandwich plates

  • Belarbia, Mohamed-Ouejdi;Tatib, Abdelouahab;Ounisc, Houdayfa;Benchabane, Adel
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.473-506
    • /
    • 2016
  • The aim of this work is the development of a 2D quadrilateral isoparametric finite element model, based on a layerwise approach, for the bending analysis of sandwich plates. The face sheets and the core are modeled individually using, respectively, the first order shear deformation theory and the third-order plate theory. The displacement continuity condition at the interfaces 'face sheets-core' is satisfied. The assumed natural strains method is introduced to avoid an eventual shear locking phenomenon. The developed element is a four-nodded isoparametric element with fifty two degrees-of-freedom (52 DOF). Each face sheet has only two rotational DOF per node and the core has nine DOF per node: six rotational degrees and three translation components which are common for the all sandwich layers. The performance of the proposed element model is assessed by six examples, considering symmetric/unsymmetric composite sandwich plates with different aspect ratios, loadings and boundary conditions. The numerical results obtained are compared with the analytical solutions and the numerical results obtained by other authors. The results indicate that the proposed element model is promising in terms of the accuracy and the convergence speed for both thin and thick plates.

Efficient finite element model for dynamic analysis of laminated composite beam

  • Naushad Alam, M.;Upadhyay, Nirbhay Kr.;Anas, Mohd.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.4
    • /
    • pp.471-488
    • /
    • 2012
  • An efficient one dimensional finite element model has been presented for the dynamic analysis of composite laminated beams, using the efficient layerwise zigzag theory. To meet the convergence requirements for the weak integral formulation, cubic Hermite interpolation is used for the transverse displacement ($w_0$), and linear interpolation is used for the axial displacement ($u_0$) and shear rotation (${\psi}_0$). Each node of an element has four degrees of freedom. The expressions of variationally consistent inertia, stiffness matrices and the load vector are derived in closed form using exact integration. The formulation is validated by comparing the results with the 2D-FE results for composite symmetric and sandwich beams with various end conditions. The employed finite element model is free of shear locking. The present zigzag finite element results for natural frequencies, mode shapes of cantilever and clamped-clamped beams are obtained with a one-dimensional finite element codes developed in MATLAB. These 1D-FE results for cantilever and clamped beams are compared with the 2D-FE results obtained using ABAQUS to show the accuracy of the developed MATLAB code, for zigzag theory for these boundary conditions. This comparison establishes the accuracy of zigzag finite element analysis for dynamic response under given boundary conditions.

Finite Element Analysis of Ultrasonic Wave Propagation in Anisotropic Materials (유한요소법을 이용한 이방성 재료에서의 초음파 전파 거동 해석)

  • Jeong, Hyun-Jo;Park, Moon-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2201-2210
    • /
    • 2002
  • The accurate analysis of ultrasonic wave propagation and scattering plays an important role in many aspects of nondestructive evaluation. A numerical analysis makes it possible to perform parametric studies, and in this way the probability of detection and reliability of test results can be improved. In this paper, a finite element method was employed for the analysis of ultrasonic wave propagation in anisotropic materials, and the accuracy of results was checked by comparing with analytical predictions. The element size and the integral time step, which are the critical components for the convergence of finite element solutions, were determined using a commercial finite element code. Some differences for wave propagation in anisotropic media were illustrated when plane waves are propagating in a unidirectionally reinforced composite materials. When plane waves are propagating in nonsymmetric directions in a symmetric plane, deviation angles between the wave vector and the energy vector were found from finite element analyses and the results agreed well with analytical calculations.

Development of Out-of-Core Equation Solver with Virtual Memory Database for Large-Scale Structural Analysis (가상 메모리 데이타베이스를 이용한 대규모 구조해석용 코어 외 방정식 해석기법의 개발)

  • 이성우;송윤환;이동근
    • Computational Structural Engineering
    • /
    • v.4 no.2
    • /
    • pp.103-110
    • /
    • 1991
  • To solve the large problems with limited core memory of computer, a disk management scheme called virtual memory database has been developed. Utilizing this technique along with memory moving scheme, an efficient in-and out-of-core column solver for the sparse symmetric matrix commonly arising in the finite element analysis is developed. Compared with other methods the algorithm is simple, therefore the coding and computational efficiencies are greatly enhanced. Analysis example shows that the proposed method efficiently solve the large structural problem on the small-memory micro-computer.

  • PDF

A Study on the Calculation of Stiffness Properties for Composite Box-Beams with Elastic Couplings (구조연성을 고려한 복합재료 상자형 보의 강성계수 예측에 관한 연구)

  • 정성남;동경민
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.147-150
    • /
    • 2001
  • In the present work, a linear static analysis is presented for thin-walled prismatic box-beams made of generally anisotropic materials. A mixed beam theory has been used to model and carry out the analysis. Three different constitutive relations are assessed into the beam formulation. Simple layup cases having symmetric or anti-symmetric configuration have been chosen and tested to clearly show the effects of elastic couplings of the beam. Both 2D and 3D finite element structural analysis using the MSC/NASTRAN has been performed to validate the current analytical results. Results show that appropriate assumptions for the constitutive equations are important and prerequisite for the accurate prediction of beam stiffness constants and also for the beam behavior.

  • PDF

NUMERICAL ANALYSIS OF A LAMINATED COMPOSITE ELASTIC FIELD WITH ROLLER GUIDED PANEL

  • Go, Jae-Gwi;Ali, Mohamed Afsar
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.2
    • /
    • pp.67-78
    • /
    • 2010
  • An elastic field composed of symmetric cross-ply laminated material is analyzed in roller guided panel. The plane stress elasticity problem is formulated in terms of two displacement parameters with mixed boundary conditions. The numerical solution for two displacement parameters is obtained using a finite element method considering a panel of glass/epoxy laminated composite. Some components of stress and displacement at different sections of panel are displayed. The results makes sure that the formulation developed in this study can be applied to analyze the characteristics of elastic field made of laminated composite under any boundary conditions.

Thermopiezoelastic Nonlinear Dynamic Characteristics of Piezolaminated Plates (압전적층판의 열-압전-탄성 동적 비선형 작동특성)

  • Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.662-667
    • /
    • 2005
  • Nonlinear dynamics of active piezolaminated plates are investigated with respect to the thermopiezoelastic behaviors. For largely deformed structures with small strain, the incremental total Lagrangian formulation is presented based on the virtual work principles. A multi field layer wise finite shell element is proposed for assuring high accuracy and non-linearity of displacement, electric and thermal fields. For dynamic consideration of thermopiezoelastic snap through phenomena, the implicit Newmark's scheme with the Newton-Raphson iteration is implemented for the transient response of various piezolaminated models with symmetric or eccentric active layers. The bifurcate thermal buckling of symmetric structural models is first investigated and the characteristics of piezoelectric active responses are studied for finding snap through piezoelectric potentials and the load path tracking map. The thermoelastic stable and unstable postbuckling, thermopiezoelastic snap through phenomena with several attractors are proved using the nonlinear time responses for various initial conditions and damping loss factors. Present results show that thermopiezoelastic snap through phenomena can result in the difficulty of buckling and postbuckling control of intelligent structures.

  • PDF

Prediction of Effective Material Properties for Triaxially Braided Textile Composite

  • Geleta, Tsinuel N.;Woo, Kyeongsik;Lee, Bongho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.222-235
    • /
    • 2017
  • In this study, finite element modeling was used to predict the material properties of tri-axially braided textile composite. The model was made based on an experimental test specimen which was also used to compare the final results. The full interlacing of tows was geometrically modelled, from which repeating parts that make up the whole braid called unit cells were identified based on the geometric and mechanical property periodicity. In order to simulate the repeating nature of the unit cell, periodic boundary conditions were applied. For validation of the method, a reference model was analyzed for which a very good agreement was obtained. Material property calculation was done by simulating uniaxial and pure shear tests on the unit cell. The comparison of these results with that of experimental test results showed an excellent agreement. Finally, parametric study on the effect of number of plies, stacking type (symmetric/anti-symmetric) and stacking phase shift was conducted.