• Title/Summary/Keyword: symmetric design

Search Result 588, Processing Time 0.027 seconds

An Analysis on Mutual Shock Spillover Effects among Interest Rates, Foreign Exchange Rates, and Stock Market Returns in Korea (한국에서의 금리, 환율, 주가의 상호 충격전이 효과 분석)

  • Kim, Byoung Joon
    • International Area Studies Review
    • /
    • v.20 no.1
    • /
    • pp.3-22
    • /
    • 2016
  • In this study, I examine mutual shock spillover effects among interest rate differences, won-dollar foreign exchange change rates, and stock market returns in Korea during the daily sample period from the beginning of 1995 to the October 16, 2015, using the multivariate GARCH (generalized autoregressive conditional heteroscedasticity) BEKK (Baba-Engle-Kraft-Kroner) model framework. Major findings are as follows. Throughout the 6 model estimation results of variance equations determining return spillovers covered from symmetric and asymmetric models of total sample period and two crisis sub-sample periods composed of Korean FX Crisis Times and Global Financial Crisis Times, shock spillovers are shown to exist mainly from stock market return shocks. Stock market shocks including down-shocks from the asymmetric models are shown to transfer to those other two markets most successfully. Therefore it is most important to maintain stable financial markets that a policy design for stock market stabilization such as mitigating stock market volatility.

Design of Subthreshold SRAM Array utilizing Advanced Memory Cell (개선된 메모리 셀을 활용한 문턱전압 이하 스태틱 램 어레이 설계)

  • Kim, Taehoon;Chung, Yeonbae
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.954-961
    • /
    • 2019
  • This paper suggests an advanced 8T SRAM which can operate properly in subthreshold voltage regime. The memory cell consists of symmetric 8 transistors, in which the latch storing data is controlled by a column-wise assistline. During the read, the data storage nodes are temporarily decoupled from the read path, thus eliminating the read disturbance. Additionally, the cell keeps the noise-vulnerable 'low' node close to the ground, thereby improving the dummy-read stability. In the write, the boosted wordline facilitates to change the contents of the memory bit. At 0.4 V supply, the advanced 8T cell achieves 65% higher dummy-read stability and 3.7 times better write-ability compared to the commercialized 8T cell. The proposed cell and circuit techniques have been verified in a 16-kbit SRAM array designed with an industrial 180-nm low-power CMOS process.

A Study on primitive polynomial in stream cipher (스트림암호에서 원시다항식에 대한 고찰)

  • Yang, Jeong-mo
    • Convergence Security Journal
    • /
    • v.18 no.4
    • /
    • pp.27-33
    • /
    • 2018
  • Stream cipher is an one-time-pad type encryption algorithm that encrypt plaintext using simple operation such as XOR with random stream of bits (or characters) as symmetric key and its security depends on the randomness of used stream. Therefore we can design more secure stream cipher algorithm by using mathematical analysis of the stream such as period, linear complexity, non-linearity, correlation-immunity, etc. The key stream in stream cipher is generated in linear feedback shift register(LFSR) having characteristic polynomial. The primitive polynomial is the characteristic polynomial which has the best security property. It is used widely not only in stream cipher but also in SEED, a block cipher using 8-degree primitive polynomial, and in Chor-Rivest(CR) cipher, a public-key cryptosystem using 24-degree primitive polynomial. In this paper we present the concept and various properties of primitive polynomials in Galois field and prove the theorem finding the number of irreducible polynomials and primitive polynomials over $F_p$ when p is larger than 2. This kind of research can be the foundation of finding primitive polynomials of higher security and developing new cipher algorithms using them.

  • PDF

The Immediate Effects of Single Leg Bridge Exercise on Abdominal Muscle Activity in Subacute Stroke Patients : a Preliminary Study

  • Kim, Hoyoung;Park, Chanbum;Bang, Sooyong;Jang, Hoyoung;Kim, Yongju;Lee, Sukmin
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.2
    • /
    • pp.167-174
    • /
    • 2021
  • Objective: Single leg bridge exercise (SLBE) improves trunk muscle activation and provides muscle stability by aligning joints related to posture. This preliminary study aimed to investigate the effects of SLBE on abdominal muscle activation in subacute stroke patients. Design: Cross-sectional study. Methods: Fifteen subacute stroke patients (9 males, 6 females) voluntarily participated in this study. SLBE was performed on the affected side. Each individual patient performed an SLBE ten times in three sets and was asked to hold their position for 5 s. Muscles activity was recorded using a surface electromyography (EMG) system before and after the SLBE. A surface EMG system was used to analyze the muscle activity during general bridge exercise, including the rectus abdominis (RA), internal oblique (IO), and external oblique (EO) abdominal muscles. Results: Muscle activity of both EO and IO on the affected side significantly increased (p<0.05), whereas the muscle activity of the RA and the three muscles on the unaffected side did not show a significant difference. In addition, improvement in muscle asymmetry of the EO and IO showed a significant change after SLBE (p<0.05). Conclusions: SLBE is effective in activating the abdominal muscles of stroke patients on the affected side and is a helpful exercise intervention that activates the muscles to transform asymmetric abdominal muscles into symmetric patterns.

Desing of Secure Adaptive Clustering Algorithm Using Symmetric Key and LEAP in Sensor Network (센서네트워크 통신에서 대칭키 방식과 LEAP을 적용한 안전한 동적 클러스터링 알고리즘 설계)

  • Jang Kun-Won;Shin Dong-Gyu;Jun Moon-Seog
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.3
    • /
    • pp.29-38
    • /
    • 2006
  • Recent advances in wireless communication technology promotes many researches related to sensor network and brings several proposals to fit into various types of sensor network communication. The research direction for sensor network is divided into the method to maximize an energy efficiency and security researches that has not been remarkable so far. To maximize an energy efficiency, the methods to support data aggregation and cluster-head selection algorithm are proposed. To strengthen the security, the methods to support encryption techniques and manage a secret key that is applicable to sensor network are proposed, In. However, the combined method to satisfy both energy efficiency and security is in the shell. This paper is devoted to design the protocol that combines an efficient clustering protocol with key management algorithm that is fit into various types of sensor network communication. This protocol may be applied to sensor network systems that deal with sensitive data.

Effect of unequal spans on the collapse behavior of multi-story frames with reduced beam section connections

  • Zheng Tan;Wei-hui Zhong;Bao Meng;Li-min Tian;Yao Gao;Yu-hui Zheng;Hong-Chen Wang
    • Steel and Composite Structures
    • /
    • v.50 no.1
    • /
    • pp.107-122
    • /
    • 2024
  • Following an internal column failure, adjacent double-span beams above the failed column will play a critical role in the load transfer and internal force redistribution within the remaining structure, and the span-to-depth ratios of double-span beams significantly influence the structural resistance capacity against progressive collapse. Most existing studies have focused on the collapse-resistant performances of single-story symmetric structures, whereas limited published works are available on the collapse resistances of multi-story steel frames with unequal spans. To this end, in this study, numerical models based on shell elements were employed to investigate the structural behavior of multi-story steel frames with unequal spans. The simulation models were validated using the previous experimental results obtained for single- and two-story steel frames, and the load-displacement responses and internal force development of unequal-span three-story steel frames under three cases were comprehensively analyzed. In addition, the specific contributions of the different mechanism resistances of unequal-span, double-span beams of each story were separated quantitatively using the energy equilibrium theory, with an aim to gain a deeper level of understanding of the load-resistance mechanisms in the unequal-span steel frames. The results showed that the axial and flexural mechanism resistances were determined by the span ratio and linear stiffness ratio of double-span beams, respectively.

A Study on the Characteristics of Knitwear Fashion Design: With a focus on Missoni, Sonia Rykiel, Azzedine Alaia

  • Chun, Hei Jung;Park, Jae Min
    • International Journal of Costume and Fashion
    • /
    • v.13 no.1
    • /
    • pp.23-34
    • /
    • 2013
  • The purpose of this study is to better understand the development and characteristics of knitwear fashion design by examining the transformation process of the modern knits. The subjects of the study are Missoni, Sonia Rykiel, and Azzedine Alaia, designers who are world-renowned knit designers, and the expressive techniques in their designs will be evaluated. The study also intends to analyze the aesthetic value of each designer's style through their product's silhouette, colors, and knitting techniques. On the basis of the analysis, we hope to research the factors in the designing process that will allow knits, which were made for practical purposes, to be valued as a luxury fashion item, and with the results, show the potential for knits in expanding its domain in fashion to become a more luxurious, creative fashion item. The characteristic comparison of the designers is as follows: First, in the case of colors, Missoni shows its distinct identity through a balance of splashy colors as well as nature-inspired color composition and balance. And, only with color use, is also able to express perspective, form composition, and rhythm. Sonia Rykiel designs are composed of black backgrounds with strong primary colors that are contrasted with one-point or stripes to express a light, urban image. Alaia emphasizes femininity by the use of black and white colors, which show modernity, in combination with neutral skin-toned colors, such as beige and gray. So, in other words, Missoni and Sonia Rykiel mixed colors for visual interconnectivity, while Alaia expressed femininity through the use of an achromatic color. Second, in the case of knitting techniques, Missoni uses the jacquard technique to make complex patterns that show balance of colors and patterns such as zigzag, stripe, geometries, and titan check, which are geometric, abstract, and symmetric. Sonia Rykiel who uses stripes as her trademark, most often utilizes the intarsia technique, which is expressed through one-point. Alaia combines diverse techniques, such as the Skashi weaving, by using computerized knitting. Third, as for silhouettes, Missoni eliminated exaggerated details in order to emphasize the flashy colors and delicate patterns and weavings of its designs, and this resulted in simplistic and relaxed silhouettes. Sonia Rykiel took advantage of the elasticity that the knit offers to get a tight silhouette, and in turn, emphasized the female sensuality. Alaia used curvilinear cuts that emphasized the womanly curves and gained an image considered soft and feminine.

A practial design of direct digital frequency synthesizer with multi-ROM configuration (병렬 구조의 직접 디지털 주파수 합성기의 설계)

  • 이종선;김대용;유영갑
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.12
    • /
    • pp.3235-3245
    • /
    • 1996
  • A DDFS(Direct Digital Frequency Synthesizer) used in spread spectrum communication systems must need fast switching speed, high resolution(the step size of the synthesizer), small size and low power. The chip has been designed with four parallel sine look-up table to achieve four times throughput of a single DDFS. To achieve a high processing speed DDFS chip, a 24-bit pipelined CMOS technique has been applied to the phase accumulator design. To reduce the size of the ROM, each sine ROM of the DDFS is stored 0-.pi./2 sine wave data by taking advantage of the fact that only one quadrant of the sine needs to be stored, since the sine the sine has symmetric property. And the 8 bit of phase accumulator's output are used as ROM addresses, and the 2 MSBs control the quadrants to synthesis the sine wave. To compensate the spectrum purity ty phase truncation, the DDFS use a noise shaper that structure like a phase accumlator. The system input clock is divided clock, 1/2*clock, and 1/4*clock. and the system use a low frequency(1/4*clock) except MUX block, so reduce the power consumption. A 107MHz DDFS(Direct Digital Frequency Synthesizer) implemented using 0.8.mu.m CMOS gate array technologies is presented. The synthesizer covers a bandwidth from DC to 26.5MHz in steps of 1.48Hz with a switching speed of 0.5.mu.s and a turing latency of 55 clock cycles. The DDFS synthesizes 10 bit sine waveforms with a spectral purity of -65dBc. Power consumption is 276.5mW at 40MHz and 5V.

  • PDF

Computations of Wave Energy by Stream Function Wave Theory (흐름함수파이론에 의한 파랑 에너지의 계산)

  • Lee, Jung Lyul;Pyun, Chong Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.67-75
    • /
    • 1986
  • This paper introduces the nonlinear Stream Function Wave Theory for design waves efficiently to compute the wave energy and energy transport quantities and to analyze the effects of nonlinearities on them. The Stream Function Wave Theory was developed by Dean for case of the observed waves with assymmetric wave profiles and of the design waves with symmetric theoretical wave profiles. Dalrymple later improved the computational procedure by adding two Lagrangian constraints so that more efficient convergence of the iterative numerical method to a specified wave height and to a zero mean free surface displacement resulted. And the Stream Function coefficients are computed numerically by the improved Marquardt algorithm developed for this study. As the result of this study the effects of nonlinearities on the wave quantities of the average potential energy density, the average kinetic energy density result in overestimation by linear wave theory compared to the Stream Function Wave Theory and increase monotonically with decreasing $L^*/L_O$ and with increasing $H/H_B$. The effects of nonlinearities on the group velocity and the wavelength quantities result in underestimation by linear wave theory and increase monotonically with increasing $H/H_B$. Finally the effect of nonlinearity on the average total energy flux results in overestimation for shallow water waves and underestimation for deep water waves by linear wave theory.

  • PDF

Development of an Improved Numerical Methodology for Design and Modification of Large Area Plasma Processing Chamber

  • Kim, Ho-Jun;Lee, Seung-Mu;Won, Je-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.221-221
    • /
    • 2014
  • The present work proposes an improved numerical simulator for design and modification of large area capacitively coupled plasma (CCP) processing chamber. CCP, as notoriously well-known, demands the tremendously huge computational cost for carrying out transient analyses in realistic multi-dimensional models, because electron dissociations take place in a much smaller time scale (${\Delta}t{\approx}10-8{\sim}10-10$) than time scale of those happened between neutrals (${\Delta}t{\approx}10-1{\sim}10-3$), due to the rf drive frequencies of external electric field. And also, for spatial discretization of electron flux (Je), exponential scheme such as Scharfetter-Gummel method needs to be used in order to alleviate the numerical stiffness and resolve exponential change of spatial distribution of electron temperature (Te) and electron number density (Ne) in the vicinity of electrodes. Due to such computational intractability, it is prohibited to simulate CCP deposition in a three-dimension within acceptable calculation runtimes (<24 h). Under the situation where process conditions require thickness non-uniformity below 5%, however, detailed flow features of reactive gases induced from three-dimensional geometric effects such as gas distribution through the perforated plates (showerhead) should be considered. Without considering plasma chemistry, we therefore simulated flow, temperature and species fields in three-dimensional geometry first, and then, based on that data, boundary conditions of two-dimensional plasma discharge model are set. In the particular case of SiH4-NH3-N2-He CCP discharge to produce deposition of SiNxHy thin film, a cylindrical showerhead electrode reactor was studied by numerical modeling of mass, momentum and energy transports for charged particles in an axi-symmetric geometry. By solving transport equations of electron and radicals simultaneously, we observed that the way how source gases are consumed in the non-isothermal flow field and such consequences on active species production were outlined as playing the leading parts in the processes. As an example of application of the model for the prediction of the deposited thickness uniformity in a 300 mm wafer plasma processing chamber, the results were compared with the experimentally measured deposition profiles along the radius of the wafer varying inter-electrode gap. The simulation results were in good agreement with experimental data.

  • PDF