• Title/Summary/Keyword: symmetric QMR

Search Result 3, Processing Time 0.016 seconds

AN ITERATIVE METHOD FOR SYMMETRIC INDEFINITE LINEAR SYSTEMS

  • Walker, Homer-F.;Yi, Su-Cheol
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.2
    • /
    • pp.375-388
    • /
    • 2004
  • For solving symmetric systems of linear equations, it is shown that a new Krylov subspace method can be obtained. The new approach is one of the projection methods, and we call it the projection method for convenience in this paper. The projection method maintains the residual vector like simpler GMRES, symmetric QMR, SYMMLQ, and MINRES. By studying the quasiminimal residual method, we show that an extended projection method and the scaled symmetric QMR method are equivalent.

ORTHOGONALIZATION PROCESS USING SYSTEMS

  • Yi, Su-Cheol
    • East Asian mathematical journal
    • /
    • v.15 no.2
    • /
    • pp.345-354
    • /
    • 1999
  • Orthogonalization can be done by the well known Gram-Schmidt process or by using Householder transformations. In this paper, we introduced an alternative process using linear systems.

  • PDF

AN ALGORITHM FOR SYMMETRIC INDEFINITE SYSTEMS OF LINEAR EQUATIONS

  • YI, SUCHEOL
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.2
    • /
    • pp.29-36
    • /
    • 1999
  • It is shown that a new Krylov subspace method for solving symmetric indefinite systems of linear equations can be obtained. We call the method as the projection method in this paper. The residual vector of the projection method is maintained at each iteration, which may be useful in some applications.

  • PDF