• Title/Summary/Keyword: symbols in mathematics

Search Result 135, Processing Time 0.018 seconds

An Analysis on the Epistemological Obstacles of Elementary Students in the Learning of Ratio and Rate (비와 비율 학습에서 나타나는 초등학교 학생들의 인식론적 장애 분석)

  • Park, Hee-Ok;Park, Man-Goo
    • Education of Primary School Mathematics
    • /
    • v.15 no.2
    • /
    • pp.159-170
    • /
    • 2012
  • Many obstacles have been found in the learning of ratio and rate. The types of epistemological obstacles concern 'terms', 'calculations' and 'symbols'. It is important to identify the epistemological obstacles that students must overcome to understand the learning of ratio and rate. In this respect, the present study attempts to figure out what types of epistemological obstacles emerge in the area of learning ratio and rate and where these obstacles are generated from and to search for the teaching implications to correct them. The research questions were to analyze this concepts as follow; A. How do elementary students show the epistemological obstacles in ratio and rate? B. What is the reason for epistemological obstacles of elementary students in the learning of ratio and rate? C. What are the teaching implications to correct epistemological obstacles of elementary students in the learning of ratio and rate? In order to analyze the epistemological obstacles of elementary students in the learning of ratio and rate, the present study was conducted in five different elementary schools in Seoul. The test was administered to 138 fifth grade students who learned ratio and rate. The test was performed three times during six weeks. In case of necessity, additional interviews were carried out for thorough examination. The final results of the study are summarized as follows. The epistemological obstacles in the learning of ratio and rate can be categorized into three types. The first type concerns 'terms'. The reason is that realistic context is not sufficient, a definition is too formal. The second type of epistemological obstacle concerns 'calculations'. This second obstacle is caused by the lack of multiplication thought in mathematical problems. As a result of this study, the following conclusions have been made. The epistemological obstacles cannot be helped. They are part of the natural learning process. It is necessary to understand the reasons and search for the teaching implications. Every teacher must try to develop the teaching method.

Drawing up class module elements of originality and convergence and suggesting class modules by combining middle school physical education and STEAM (중학교 체육과 STEAM 융합을 통한 창의·융합 수업 모듈 요소 도출 및 수업 모듈 제시)

  • Hong, Hee-Jung;Lim, Hyun-Joo
    • Journal of Wellness
    • /
    • v.14 no.2
    • /
    • pp.207-223
    • /
    • 2019
  • The purpose This study aimed at proposing class module elements for creativity and convergence and class models for creativity and convergence by integrating content elements by physical activity field(health, challenge, competition, ) for physical education and STEAM. For this, literature review, focus group interview(FGI) and discussions with experts were conducted, and the following study results have been drawn up: First, concerning the class module elements for creativity and convergence, total 11 class module elements in the health field were suggested including detecting risks by posture analysis and analyzing and designing amount of physical activity. Second, total 7 module elements in the challenge field were deduced such as anticipation of obstacles to target achievement and modeling of effective exercise. There were 17 convergence elements in the competition field including game record analysis and creation of game data storage application. Third, total 9 creativity and convergence module elements in the field include modeling of technology improvement for motion and symbolization for motion records. In addition, class modules related to convergence with engineering in the health field, convergence with technology in the challenge field, convergence with art in the competition field and convergence with art and mathematical symbols were proposed.

A Case Study on Student Self-Evaluation of Wrong Answers in School Mathematics (수학 교과에서의 학생의 오답원인 자기평가에 관한 사례 연구)

  • Hwang, Hye Jeang;Kim, Myeong Soo
    • Communications of Mathematical Education
    • /
    • v.28 no.2
    • /
    • pp.255-279
    • /
    • 2014
  • This study is to investigate the change of intelligent and affective domains through the student self-evaluation to identify causes of wrong answers. Through this evaluation, students could have opportunities to solve the given mathematical problems basically and to reflect their problem-solving process, and further to recognize which mathematical content(concepts or expressions, symbols, etc.) led them to solve the problems incorrectly or wrong. Through this process, they would correct their wrong process and answers and to reinforce the prerequisite knowledges relevant to the problems, and furthermore, to enhance problem-solving abilities. To accomplish this, this study was executed as a case study on the subject of four tenth graders. The subject consisted of two boys and two girls. In this study, three essay types of mathematical problems in tenth grade level were chosen from several domestic tests in Korea. Based on the original three essay type of problems, three types of similar problems, namely equivalent problem, similar problem, and isomorphic problems were reconstructed, respectively by the researchers. The subjects were guided to solve the original three problems, and they corrected their wrong parts of the first problem of the three problems. They solved an equivalent problem of the first problem and executed self evaluation and also corrected wrong parts. Next, they dealt with a similar problem of the first problem and executed self evaluation and also corrected wrong parts. Next, while dealing with an isomorphic problem of the first problem, the subjects did the same things. Thus, for the second and third original problems, the study was implemented in the same way. To explore their intelligent and affective domains through student self-evaluation in-depth, the subjects were interviewed formally before and after conducting the experiment and interviewed informally two times, and the recordings were audio-typed.

Understanding Lacan's Psychology through the Mathematical Concepts and its Application (수학적 개념을 통한 라깡의 심리학에 대한 이해와 그 응용)

  • Kim, Jae-Ryong
    • Communications of Mathematical Education
    • /
    • v.28 no.1
    • /
    • pp.45-55
    • /
    • 2014
  • Lacan gives an explanation on our real actual world by the concepts the "Real", the "Imaginary" and the "Symbolic". Although this three registers are not far from each other, they never can be unified. Among animals, only human has interest in the "truth". The concept of truth is discussed and debated in several contexts, including philosophy and religion. Many human activities depend upon the concept, which is assumed rather than a subject of discussion, including science, law, and everyday life. Language and words are a means by which humans convey information to one another, and the method used to determine what is a "truth" is termed a criterion of truth. Accepting then that "language is the basic social institution in the sense that all others presuppose language", Lacan found in Ferdinand de Saussure's linguistic division of the verbal sign between signifier and signified a new key to the Freudian understanding that "his therapeutic method was 'a talking cure'". The purpose of this paper is to understand Lacan's psychology and psychoanalysis by using the mathematical concepts and mathematical models, especially geometrical and topological models. And re-explanation of the symbolic model and symbols can help students understand new ideas and concepts in the educational scene.

A Study of the Representation in the Elementary Mathematical Problem-Solving Process (초등 수학 문제해결 과정에 사용되는 표현 방법에 대한 연구)

  • Kim, Yu-Jung;Paik, Seok-Yoon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.9 no.2
    • /
    • pp.85-110
    • /
    • 2005
  • The purpose of this study is to examine the characteristics of visual representation used in problem solving process and examine the representation types the students used to successfully solve the problem and focus on systematizing the visual representation method using the condition students suggest in the problems. To achieve the goal of this study, following questions have been raised. (1) what characteristic does the representation the elementary school students used in the process of solving a math problem possess? (2) what types of representation did students use in order to successfully solve elementary math problem? 240 4th graders attending J Elementary School located in Seoul participated in this study. Qualitative methodology was used for data analysis, and the analysis suggested representation method the students use in problem solving process and then suggested the representation that can successfully solve five different problems. The results of the study as follow. First, the students are not familiar with representing with various methods in the problem solving process. Students tend to solve the problem using equations rather than drawing a diagram when they can not find a word that gives a hint to draw a diagram. The method students used to restate the problem was mostly rewriting the problem, and they could not utilize a table that is essential in solving the problem. Thus, various errors were found. Students did not simplify the complicated problem to find the pattern to solve the problem. Second, the image and strategy created as the problem was read and the affected greatly in solving the problem. The first image created as the problem was read made students to draw different diagram and make them choose different strategies. The study showed the importance of first image by most of the students who do not pass the trial and error step and use the strategy they chose first. Third, the students who successfully solved the problems do not solely depend on the equation but put them in the form which information are decoded. They do not write difficult equation that they can not solve, but put them into a simplified equation that know to solve the problem. On fraction problems, they draw a diagram to solve the problem without calculation, Fourth, the students who. successfully solved the problem drew clear diagram that can be understood with intuition. By representing visually, unnecessary information were omitted and used simple image were drawn using symbol or lines, and to clarify the relationship between the information, numeric explanation was added. In addition, they restricted use of complicated motion line and dividing line, proper noun in the word problems were not changed into abbreviation or symbols to clearly restate the problem. Adding additional information was useful source in solving the problem.

  • PDF