• Title/Summary/Keyword: symbols in mathematics

Search Result 135, Processing Time 0.026 seconds

A Study of Exploration- Oriented Mathematical Modeling: (탐구지향 수학적 모델링에 관한 연구)

  • 신은주;권오남
    • Journal of Educational Research in Mathematics
    • /
    • v.11 no.1
    • /
    • pp.157-177
    • /
    • 2001
  • Modern society's technological and economical changes require high-level education that involve critical thinking, problem solving, and communication with others. Thus, today's perspective of mathematics and mathematics learning recognizes a potential symbolic relationship between concrete and abstract mathematics. If the problems engage students' interests and aspiration, mathematical problems can serve as a source of their motivation. In addition, if the problems stimulate students'thinking, mathematical problems can also serve as a source of meaning and understanding. From these perspectives, the purpose of my study is to prove that mathematical modeling tasks can provide opportunities for students to attach meanings to mathematical calculations and procedures, and to manipulate symbols so that they may draw out the meanings out of the conclusion to which the symbolic manipulations lead. The review of related literature regarding mathematical modeling and model are performed as a theoretical study. I especially concentrated on the study results of Freudenthal, Fischbein, Lesh, Disessea, Blum, and Niss's model systems. We also investigate the emphasis of mathematising, the classified method of mathematical modeling, and the cognitive nature of mathematical model. And We investigate the purposes of model construction and the instructive meaning of mathematical modeling. In conclusion, we have presented the methods that promote students' effective model construction ability. First, the teaching and the learning begins with problems that reflect reality. Second, if students face problems that have too much or not enough information, they will construct useful models in the process of justifying important conjecture by attempting diverse models. Lastly, the teachers must understand the modeling cycle of the students and evaluate the effectiveness of the models that the students have constructed from their classroom observations, case study, and interaction between the learner and the teacher.

  • PDF

A History of Calculus and the Dialectical Materialism (미적분의 역사와 변증법적 유물론)

  • 조윤동
    • School Mathematics
    • /
    • v.5 no.4
    • /
    • pp.521-540
    • /
    • 2003
  • The processes of mathematics development and the results of it are always those of making a conquest of the circumscription by historical inevitability within the historical circumscription. It is in this article that I try to show this processes through the history of calculus. This article develops on the basis of the dialectical materialism. It views the change and development as the facts that take place not by individual subjective judgments but by social-historical material conditions as the first conditions. The dialectical materialism is appropriate for explaining calculus treated in full-scale during the 17th century, passing over ahistorical vacuum after Archimedes about B.C. 4th century. It is also appropriate for explaining such facts as frequent simultaneous discoveries observed in the process of the development of calculus. 1 try to show that mathematics is social-historical products, neither the development of the logically formal symbols nor the invention by subjectivity. By this, I hope to furnish philosophical bases on the discussion that mathematics teaching-learning must start from the real world.

  • PDF

Impacting Student Confidence : The effects of using virtual manipulatives and increasing fraction understanding. (수학에 대한 자신감 증진: 가상학습교구를 통한 분수 개념 이해의 결과)

  • ;Jenifer Suh;Patricia S. Moyer
    • Journal of Educational Research in Mathematics
    • /
    • v.14 no.2
    • /
    • pp.207-219
    • /
    • 2004
  • There have been studies reporting the increase in student confidence in mathematics when using technology. However, past studies indicating a positive correlation between technology and confidence in mathematics do not explain why they see this positive outcome. With increased availability and easy access to the Internet in schools and the development of free online virtual manipulatives, this research was interested in how the use of virtual manipulatives in mathematics can affect students confidence in their mathematical abilities. Our hypothesis was that the classes using virtual manipulatives which allows students to connecting dynamic visual image with abstract symbols will help students gain a deeper conceptual understanding of math concept thus increasing their confidence and ability in mathematics. The participants in this study were 46 fifth-grade students in three ability groups: one high, one middle and one low. During a two-week unit on fractions, students in three groups interacted with several virtual manipulative applets in a computer lab. Data sources in the project included a pre and posttest of students mathematics content knowledge, Confidence in Learning Mathematics Scale, field notes and student interviews, and classroom videotapes. Our aim was to find evidence for increased level of confidence in mathematics as students strengthened their understanding of fraction concepts. Results from the achievement score indicated an overall main effect showing significant improvement for all ability groups following the treatment and an increase in the confidence level from the preassessment of the Confidence in Learning Mathematics Scale in the middle and high ability groups. An interesting finding was that the confidence level for the low ability group students who had the highest confidence level in the beginning did not change much in the final confidence scale assessment. In the middle and high ability groups, the confidence level did increase according to the improvement of the contest posttest. Through interviews, students expressed how the virtual manipulatives assisted their understanding by verifying their answers as they worked and facilitated their ability to figure out math concept in their mind and visually.

  • PDF

South Korean Elementary Teachers' Perception about Students' Mathematics Listening Ability (수학 청해력 유형에 관한 초등학교 교사의 인식 조사 연구)

  • Kim, Rina
    • Education of Primary School Mathematics
    • /
    • v.25 no.4
    • /
    • pp.343-360
    • /
    • 2022
  • In mathematics classes, the verbal explanation may contain diverse mathematical concepts and principles in short sentences. It may also include mathematics symbols and terms that might not be used in everyday life. Therefore, students may need particular listening ability in order to understand and participate in mathematics communication. Unlike general listening, the listening ability for mathematics classes may require student to integrate their mathematical and linguistic knowledge. The aim of this study is to reveal the subdomains of listening ability for mathematics classes in a elementary school. I categorized listening ability for mathematics classes in a elementary school from the literature. The categories of listening ability for mathematics are Interpretive Listening, Evaluative Listening, Hermeneutic Listening, Selective Listening, Pretend Listening, and Ignored Listening. In order to develop a framework for understanding listening ability for mathematics classes, I investigated a hierarchy of 412 South Korean elementary teachers' perception. Through a web-based survey, the teachers were asked to rank order their beliefs about and students' listening ability. Findings show that teachers' perceptions about listening ability for mathematics classes are divergent from current research trends. South Korean elementary teachers perceived Interpretive Listening as the most important listening.

The analysis of the concept of equal symbol and the investigation of the students' understanding of it (등호 개념의 분석 및 학생들의 등호 이해 조사)

  • 이종희;김선희
    • Journal of Educational Research in Mathematics
    • /
    • v.13 no.3
    • /
    • pp.287-307
    • /
    • 2003
  • This study analyzed the concept of equal symbol(=) that is the most symbol used in learning of mathematics and investigated students' understanding of that. The equal symbol is endowed with the 'same', 'equal', and 'equivalent' meaning, represented by =, but students interpret the meaning of equal symbol according to the mathematical con text. Thus, we analyzed the equal symbol on the basis of the theory of conceptual fields. In the theory of conceptual fields, concept is a three-tuple of three sets of situation, operational invariants and symbolic representations, and the operational invariants are the concept-in-action and the theorems- in-action. With the analysis contents, we investigated how students read = by korean, what equals in the expression containing = or by what meaning students used =, and which they could correct the error for =. This study imply that we should consider the symbol notation agreed by mathematical society, the meaning, and the situational context that it used, when we teach the mathematics symbols.

  • PDF

A Study on the Recognition and Characteristics of Mathematical Justification for Gifted Students in Middle School Mathematics (중학교 수학 영재아의 수학적 정당화에 대한 인식과 특성에 관한 연구)

  • Hong, Yong-Suk;Son, Hong-Chan
    • Journal of the Korean School Mathematics Society
    • /
    • v.24 no.3
    • /
    • pp.261-282
    • /
    • 2021
  • This study identified the meaning of mathematical justification and its characteristics for middle school math gifted students. 17 middle school math gifted students participated in questionnaires and written exams. Results show that the gifted students recognized justification in various meanings such as proof, systematization, discovery, intellectual challenge of mathematical justification, and the preference for deductive justification. As a result of justification exams, there was a difference in algebra and geometry. While there were many deductive justifications in both algebra and geometry questionnaires, the difference exists in empirical justifications: there were many empirical justifications in algebra, but there were few in geometry questions. When deductive justification was completed, the students showed satisfaction with their own justification. However, they showed dissatisfaction when they could not deductively justify the generality of the proposition using mathematical symbols. From the results of the study, it was found that justification education that can improve algebraic translation ability is necessary so that gifted students can realize the limitations and usefulness of empirical reasoning and make deductive justification.

Analysis of Mathematical Structure to Identify Students' Understanding of a Scientific Concept: pH Value and scale

  • Park, Eun-Jung;Choi, Kyung-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.30 no.7
    • /
    • pp.920-932
    • /
    • 2010
  • Many topics in science, especially, abstract concepts, relationships, properties, entities in invisible ranges, are described in mathematical representations such as formula, numbers, symbols, and graphs. Although the mathematical representation is an essential tool to better understand scientific phenomena, the mathematical element is pointed out as a reason for learning difficulty and losing interests in science. In order to further investigate the relationship between mathematics knowledge and science understanding, the current study examined 793 high school students' understanding of the pH value. As a measure of the molar concentration of hydrogen ions in the solution, the pH value is an appropriate example to explore what a student mathematical structure of logarithm is and how they interpret the proportional relationship of numbers for scientific explanation. To the end, students were asked to write their responses on a questionnaire that is composed of nine content domain questions and four affective domain questions. Data analysis of this study provides information for the relationship between student understanding of the pH value and related mathematics knowledge.

HYPERIDENTITIES IN (xy)x ≈x(yy) GRAPH ALGEBRAS OF TYPE (2,0)

  • Khampakdee, Jeeranunt;Poomsa-Ard, Tiang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.651-661
    • /
    • 2007
  • Graph algebras establish a connection between directed graphs without multiple edges and special universal algebras of type (2,0). We say that a graph G satisfies an identity $s{\approx}t$ if the corresponding graph algebra $\underline{A(G)}$ satisfies $s{\approx}t$. A graph G=(V,E) is called an $(xy)x{\approx}x(yy)$ graph if the graph algebra $\underline{A(G)}$ satisfies the equation $(xy)x{\approx}x(yy)$. An identity $s{\approx}t$ of terms s and t of any type ${\tau}$ is called a hyperidentity of an algebra $\underline{A}$ if whenever the operation symbols occurring in s and t are replaced by any term operations of $\underline{A}$ of the appropriate arity, the resulting identities hold in $\underline{A}$. In this paper we characterize $(xy)x{\approx}x(yy)$ graph algebras, identities and hyperidentities in $(xy)x{\approx}x(yy)$ graph algebras.

Study on the Teaching of Proofs based on Byrne's Elements of Euclid (Byrne의 'Euclid 원론'에 기초한 증명 지도에 대한 연구)

  • Chang, Hyewon
    • Journal of Educational Research in Mathematics
    • /
    • v.23 no.2
    • /
    • pp.173-192
    • /
    • 2013
  • It may be replacement proofs with understanding and explaining geometrical properties that was a remarkable change in school geometry of 2009 revised national curriculum for mathematics. That comes from the difficulties which students have experienced in learning proofs. This study focuses on one of those difficulties which are caused by the forms of proofs: using letters for designating some sides or angles in writing proofs and understanding some long sentences of proofs. To overcome it, this study aims to investigate the applicability of Byrne's method which uses coloured diagrams instead of letters. For this purpose, the proofs of three geometrical properties were taught to middle school students by Byrne's visual method using the original source, dynamic representations, and the teacher's manual drawing, respectively. Consequently, the applicability of Byrne's method was discussed based on its strengths and its weaknesses by analysing the results of students' worksheets and interviews and their teacher's interview. This analysis shows that Byrne's method may be helpful for students' understanding of given geometrical proofs rather than writing proofs.

  • PDF

An Analysis on the Mathematical Creativity and Computational Thinking of Elementary School Mathematical Gifted Students in the Convergence Class Programs (융합 수업 프로그램에서 나타나는 초등 수학 영재들의 수학적 창의성과 컴퓨팅 사고 분석)

  • Kang, Joo Young;Kim, Dong Hwa;Seo, Hae Ae
    • East Asian mathematical journal
    • /
    • v.38 no.4
    • /
    • pp.463-496
    • /
    • 2022
  • The purpose of this study is to analyze the mathematical creativity and computational thinking of mathematically gifted elementary students through a convergence class using programming and to identify what it means to provide the convergence class using Python for the mathematical creativity and computational thinking of mathematically gifted elementary students. To this end, the content of the nine sessions of the Python-applied convergence programs were developed, exploratory and heuristic case study was conducted to observe and analyze the mathematical creativity and computational thinking of mathematically gifted elementary students. The subject of this study was a single group of sixteen students from the mathematics and science gifted class, and the content of the nine sessions of the Python convergence class was recorded on their tablets. Additional data was collected through audio recording, observation. In fact, in order to solve a given problem creatively, students not only naturally organized and formalized existing mathematical concepts, mathematical symbols, and programming instructions, but also showed divergent thinking to solve problems flexibly from various perspectives. In addition, students experienced abstraction, iterative thinking, and critical thinking through activities to remove unnecessary elements, extract key elements, analyze mathematical concepts, and decompose problems into small components, and math gifted students showed a sense of achievement and challenge.