• Title/Summary/Keyword: switching mode power supply

Search Result 183, Processing Time 0.024 seconds

Implementation of a High Efficiency SCALDO Regulator Using MOSFET (MOSFET를 이용한 고효율 SCALDO 레귤레이터 구현)

  • Kwon, O-Soon;Son, Joon-Bae;Kim, Tea-Rim;Song, Jong-Gyu
    • Journal of IKEEE
    • /
    • v.19 no.3
    • /
    • pp.304-310
    • /
    • 2015
  • A SCALDO(Supercapacitor Assisted LDO) regulator is a new regulator having advantages of a SMPS(Switch Mode Power Supply) which has a good efficiency and a LDO(Low Drop-out) regulator which has stable output characteristics and good EMI(Electro Magnetic Interference) characteristics. However, a conventional SCALDO regulator needs a lot of power consumption to control its switches and it drops an efficiency of the circuit. In this paper, to reduce switching power consumption and improve an efficiency of the circuit, a new SCALDO regulator adopting MOSFETs as its switching parts is proposed and it is found out that the proposed SCALDO regulator has the maximum 9.5% higher efficiency than the conventional SCALDO regulator. We also try to simplify production process of the circuit by changing switching control method of the circuit from MCU(Micro-controller unit) based firmware control to hardware control using a comparator and a T-F/F(Flip Flop).

HIGH VOLTAGE DC POWER FEEDING TECHNOLOGY IN B-PON SYSTEM (B-PON 시스템을 위한 전원 공급망의 고전압 구현기술)

  • Lee, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.226-227
    • /
    • 2001
  • 일반거주지역의 초고속 광가입자망 구축을 위해 B-PON(Broadband Passive optical network)시스템과 이를 위한 급전방안으로 공유급전이 고려되고 있다. 한곳의 Power-Node가 최대 32개의 ONU에 전력을 공급하기 위해서는 고 전위의 구동 source가 필요하게 된다. 고압실현을 위하여 검토되는 회로는 범용으로 사용되는 linear 방식보다는 SMPS(Switching Mode Power Supply)방식의 소형경량화의 회로를 채택하며, 고 용량화에 수반되는 역률 문제를 보상하고, 고효율을 실현하여 전체시스템의 전력밀도의 극대화를 이루었다.

  • PDF

A Study on Methodology to Improve the Power Factor of the High Power LED Module (고출력 LED 모듈 역률 개선 방법 연구)

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.18 no.3
    • /
    • pp.335-340
    • /
    • 2014
  • Recently, LED (Light Emitting Diode) becomes to be useful to apply for the lightening sources in electric systems and the lightening equipment since the power is less consumed with high efficiency, and the size and the weight of LED are small and light, respectively. The LED is controlled with constant current and SMPS (Switching Mode Power Supply). It is necessary for the LED manufacturer to secure the fundamental technology of designing LED chip, and to study the methodology to improve the power factor (PF) and to design the operational circuit for the development of LED to reduce the power loss in the application of LED lightening. The direct AC (Alternating Current) LED driving circuit, HV9910, is widely used in the industry field. In this paper, it is to evaluate the improved methodology for the power factor and efficiency through simulations when PFC (Power Factor Correction) and Noise Filter are added to HV9910.

Implementation of Inverter Systems for DC Power Regeneration

  • Kim Kyung-Won;Yoon In-Sic;Seo Young-Min;Hong Soon-Chan;Yoon Duck-Yong
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.126-131
    • /
    • 2001
  • This paper deals with implementation of inverter systems for DC power regeneration, which can regenerate the excessive DC power from DC bus line to AC supply in substations for traction systems. From the viewpoint of both power capacity and switching losses, a three-phase square-wave inverter system is adopted. To control the regenerated power, the magnitude and phase of fundamental output voltages should be appropriately controlled in spite of the variation of input DC voltage. Inverters are operated with modified a-conduction mode to fix the potential of each arm. The overall system consists of the line-to-line voltage and line current sensors, an actual power calculator using d-q transformation method, a complex power controller with PI control scheme, a gating signal generator for modified $\alpha-conduction\;mode\;with\;\delta\;and\;\alpha$, a DPLL for frequency followup, and power circuit.

  • PDF

Output Voltage Ripple Analysis and Design Considerations of Intrinsic Safety Flyback Converter Based on Energy Transmission Modes

  • Hu, Wei;Zhang, Fangying;Xu, Yawu;Chen, Xinbing
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.908-917
    • /
    • 2014
  • For the purpose of designing an intrinsic safety Flyback converter with minimal output voltage ripple based on a specified output current, this paper first classified the energy transmission modes of the system into three sorts, namely, the Complete Inductor Supply Mode-CCM (CISM-CCM), the Incomplete Inductor Supply Mode-CCM (IISM-CCM) and the Incomplete Inductor Supply Mode-DCM (IISM-DCM). Then, the critical secondary self-inductance assorting the three modes are deduced and expressions of the output voltage ripples (OVR) are presented. For a Flyback converter with constant loads and switching frequency, it is shown that the output voltage ripple in the CISM-CCM is the smallest and that it has no relationship with the secondary self-inductance. Otherwise, the OVR of the other two modes are bigger than the previously mentioned one. It is concluded that the critical inductance between the CISM-CCM and the IISM-CCM is the minimal secondary self-inductance to ensure the smallest output voltage ripple. At last, a design method to guarantee the minimum OVR within the scales of the input voltage and load are analyzed, and the minimum secondary self-inductance is proposed to minimize the OVR. Simulations and experiments are given to verify the results.

A Study on the stability of boost power factor correction circuit with voltage feedback loop (전압제어루프를 고려한 부스트방식 역률개선회로의 안정도에 관한 연구)

  • Kim, Cherl-Jin;Jang, Jun-Young;Ji, Jae-Geun;Song, Yo-Chang
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.271-273
    • /
    • 2002
  • Switching power supply are widely used in many industrial field. Power factor correction(PFC) has become an increasingly necessary feature in new power supply designs. The power factor correction circuit using boost converter used in input of power source is studied in this paper. In a boost power factor correction circuit there are two feedback control loops, which are a current feedback loop and a voltage feedback loop. In this paper, it is analyzed regulation performance of output voltage and compensator to improve of transient response that presented at continuous conduction mode(CCM) of boost PFC circuit. The validity of designed boost PFC circuit is confirmed by simulation and experimental results.

  • PDF

Voltage Source Resonant Inverter for Excimer Gas Discharge Load

  • Koudriavtsev, Oleg;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.2 no.3
    • /
    • pp.206-211
    • /
    • 2002
  • Silent gas discharge method has been widely applied fur ozone production, ultraviolet light and UV laser generation. Since ozone and ultraviolet applications have tendency to spread widely in industry, the development of efficient and low - cost power supply for such systems is an important task at present. This paper introduces high-frequency inverter type mode power supply designed fur ozone generation tube and ultraviolet generation excimer lamp and considerations on the design of the inverter and pulse density modulation control strategy applied in it.

Input Current Ripple Improvement on Interleaved Boost Power Factor Corrector Operating in Discontinuous Current Mode (불연속 전류모드로 동작하는 Interleaved 승압형 역률보상 컨버터의 입력전류 리플개선)

  • 허태원;박지호;노태균;김동완;박한석;우정인
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.116-123
    • /
    • 2003
  • In this paper, interleaved boost converter is applied as a pre-regulator in switched mode power supply. The pre-regulator plays a role to improve power factor. Interleaved Boost Power Factor Corrector(IBPFC) can reduce input current ripple as a single voltage control loop only without inner current loop, because input current is divided each 50% by two switching devices. Each converter cell is also operated in discontinuous current mode and inductor current of each converter is discontinuous. Total input current which is composed by each converter cell is continuous current. Thus, IBPFC is able to improve input current ripple. IBPFC operating in discontinuous current mode can be classified as six modes from switching state and be carried out state space averaging small signal modeling. A control transfer function is obtained according to the modeling. Single voltage control loop is also constructed by the control transfer function. From experimental result, improvement of power factor and input current ripple are verified.

A Design of Integrated Circuit for High Efficiency current mode boost DC-DC converter (고효율 전류모드 승압형 DC-DC 컨버터용 집적회로의 설계)

  • Lee, Jun-Sung
    • 전자공학회논문지 IE
    • /
    • v.47 no.2
    • /
    • pp.13-20
    • /
    • 2010
  • This paper describes a current mode PWM DC-DC converter IC for battery charger and supply power converter for portable electronic devices. The maximum supply voltage of IC is 40[V] and 2.8[V]~330[V] DC input power is converted to higher or programmed DC voltage according to external resistor ratio or wire winding ratio of transformer. The maximum supply output current is 3[A] over and voltage error of output node is within 3[%]. The whole circuit needed current mode PWM DC-DC converter circuit is designed. The package dimensions and number of external parts are minimized in order to get a smaller hardware size. The power consumption is smaller then 1[mW] at stand by period with supply voltage of 3.6[V] and maximum energy conversion efficiency is about 86[%]. This device has been designed in a 0.6[um] double poly, double metal 40[V] CMOS process and whole chip size is 2100*2000 [um2].

Carrier Comparison PWM Method of Vienna Rectifier for Reduction of Common Mode Voltage (비엔나 정류기의 공통모드 전압 저감이 가능한 캐리어 비교 PWM 기법)

  • Lee, Dong-Hyun;Choi, Won-Il;Hong, Chang-Pyo;Kim, Hag-Wone;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.126-133
    • /
    • 2016
  • This paper proposes a new PWM method to reduce the common mode voltage change in three-level Vienna rectifier. This new proposed PWM method uses medium voltage vector for the three-level Vienna rectifier to determine the sum of three-phase voltage zero, and the common mode voltage variation is decreased. Using the carrier comparison method, the switching function generator for three-level Vienna rectifier has been proposed. The effects of the proposed PWM method have been verified through simulation using the PSIM.