• Title/Summary/Keyword: switched reluctance motor (SRM)

Search Result 554, Processing Time 0.024 seconds

Direct Instantaneous Torque Control of SRM using 4-level Converter (4-레벨 콘버터를 이용한 SRM의 순시 토오크 제어 기법)

  • Lee, Dong-Hee;Lee, Sang-Hun;Ahn, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.205-212
    • /
    • 2007
  • This paper presents a direct instantaneous torque control (DITC) of Switched Reluctance Motor (SRM) with a novel 4-level converter to develop a uniform torque and to improve a dynamic performance. The DITC method can reduce a high torque ripple of SRM. Drive efficiency and dynamic performance with conventional drive are low due to a slow excitation current build-up. Since the 4-level converter can obtain an addition boosted voltage to have a fast excitation and demagnetization, it can Improve dynamic performance and efficiency easily. To apply the DITC technique to a 4-level converter, a novel control scheme is presented according to the operating modes. Additionally, selection of capacitances of boosted capacitor and efficiency improvement of 4-level converter are analyzed. At last, the validity of proposed method is verified by some computer simulations md comparative experiments.

Determination of Optimal Turn-off Angle for SRM Converter Using Self-Tuning Method (SRM 컨버터에서 자기동조 방식에 의한 턴오프 각의 결정)

  • 장도현;문진영
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.418-425
    • /
    • 1998
  • In this paper. determination method of turn-off angle in the SRM drives is proposed to maintain the high torque at a any turn-on angle, which is realized by using selHuning control method, During the sampling time. a number of P pulses from encoder are checked by using one-chip microprocessor. and compared with pre-checked a number of pulses A After calculating difference between two data, the turn-off angle moves forward or backward direction by the self-tuning m method, As repeating such process, the optimal turn-off angle is determined and the maximum torque is maintained T Though experiments, it is observed that motor speed is almost maintained if turn-off angle is adjusted automatically by s selHuning method when turn-ηn angle is changed.

  • PDF

Design and Characteristics Analysis of a Novel Single-phase Hybrid SRM for Blender Application

  • Jeong, Kwang-Il;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1996-2003
    • /
    • 2018
  • In this paper, the design and characteristic analysis of a novel single-phase hybrid switched reluctance motor (HSRM) for the purpose of replacing the universal motor in commercial blenders are presented. The proposed motor is easy to manufacture due to its simple yet robust structure with minimized power switches and no torque dead-zone. Moreover, the proposed HSRM is able to deliver a high starting torque as a requirement for blending hard food or even ice. The stator has permanent magnets (PMs) mounted on its inner surface and the rotor has a wide pole arc and salient poles that contribute to its high starting torque profile and the elimination of the torque dead-zone. Finite element method (FEM) is used to analyze the characteristic of the proposed motor. Finally, the prototype is manufactured and its performance is verified through experiments.

Characteristic Analysis of C-dump Converter Topology for SRM of Electric Multiple Unit Door Driving (전동차 출입문 구동을 위한 SRM용 C-dump 컨버터 Topology 특성 비교)

  • Yoon, Yong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1597-1604
    • /
    • 2016
  • The speed at which the SRM (Switched Reluctance Motor) makes a transition from chopping control to single pulse operation. (i.e., low speed to high speed operation). It is unsatisfied with performance at all operational regimes. In this paper, the operational performance of SRM can be improved by using current hysteresis control method. This method maintains a generally flat current waveform. At the high speed, the current chopping capability is lost due to the development of the back-EMF. Therefore SRM operates in single pulse mode. By using zero-current switching and zero-voltage switching technique, the stress of power switches can be reduce in chopping mode. When the commutation from one phase winding to another phase winding, the current can be zero as fast as possible in this period because several times negative voltage of DC-source voltage produce in phase winding. This paper is compared to performance based on energy efficient C-dump converter topology and the proposed resonant C-dump converter topology. Simulation and experimental results are presented to verify the effectiveness of the proposed circuit.

A Direct Torque Control Characteristics of SRM using PWM Approach (PWM 기법을 적용한 SRM의 직접토크 제어 특성)

  • Lee, Dong-Hee;Wang, Huijun;Ahn, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.179-185
    • /
    • 2008
  • In this paper, an advanced torque control scheme of SRM using DITC(Direct Instantaneous Torque Control) and PWM(pulse width modulation) is presented. Different from conventional DITC method, proposed method uses one or two switching modes at every sampling time, instead of only one switching mode. The duty ratio of the phase switch is regulated according to the torque error and simple control rules of DITC. Moreover the sampling time of control can be extended, which allows implementation on low cost micro-controllers. A simple calculation of PWM can assure a constant switching frequency with an excellent control performance. The proposed control method is verified by the simulations and experimental results.

The Influence of The Starting Permanent Magnet on Mo-Load Speed of The Salient Pole Rotor Type Single Phase SRM (영구자석 기동장치가 회전자 돌극형 단상 SRM의 무부하 속도에 미치는 영향)

  • Kim, Jun-Ho;Lee, Eun-Woong;Cho, Hyun-Kil;Lee, Seong-Min;Lee, Hwa-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.73-75
    • /
    • 2002
  • Single phase SRM(switched reluctance motor) is very simple in structure and in driving circuit than three phase SRM. But it can't be started by itself. The prototype of salient pole rotor type single phase SRM was fabricated in former research and the starting device was installed in bottom of the rotor for generating start torque. The starting device is composed of permanent magnet and it is placed the rotor at specific position which is generated positive torque when the prototype is started. Therefore the prototype was started by itself but it is also affected the torque and the speed in operation. On this paper, the influence of the starting device on no-load speed of the prototype was confirmed by measurement of no-load speed according to installation of the starting device or not.

  • PDF

Current Control of Switched Reluctance Motor with Delta Modulation Method on EPLD Logic Design (EPLD 로직구현을 통한 델타변조기법에 의한 스위치드 리럭턴스 전동기의 전류제어)

  • Yoon, Yong-Ho;Kim, Jae-Moon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.4
    • /
    • pp.356-361
    • /
    • 2008
  • The conventional drive system of SRM has a current sensor per each phase. The torque demand signal generated by the outer control loop is translated into individual current reference signal for each phase. The torque is controlled by regulating these currents. Using the SRM in a variable-speed control, the phase currents are generally regulated to achieve a square wave. The simplest form of current regulation uses fixed frequency delta modulation of the phase voltages. The aim of this paper is to regulate 3-phases current of SRM by only single current sensor using delta modulation with digital chip. In this paper, the asymmetric bridge converter which is able to control independently phases and be excited simultaneously is used as the driver system for 6/4 poles SRM. And the current sensor is replaced 3 sensors of each phase with only one on bus line of converter so as to detect current of every phase. The proposed delta modulation technique has been implemented in a simple digital logic circuit using EPLD(Electrically Programmable Logic Device). This method is verified through simulation and experiment results.

Propulsion Control of Railway Vehicle using Semiconductor Transformer and Switched Reluctance Motor (반도체 변압기 및 스위치드 릴럭턴스 전동기(SRM)를 적용한 철도차량 추진제어)

  • Jeong, Sungin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.127-132
    • /
    • 2022
  • Among the electrical components mounted on railroad cars, the largest load is the main transformer, which has a low power density of 0.2~0.4 MVA/ton due to the low operating frequency(60Hz), which is an important factor for weight reduction. Therefore, research on molded transformers, semiconductor transformers, etc. is being actively conducted at Domestic and foreign in order to improve the main transformer for railway vehicles. Meanwhile, attempts are being made to apply a permanent magnet synchronous motor (PMSM) to replace an induction motor as a traction motor that is mostly applied to domestic and foreign railway vehicles. Permanent magnet synchronous motors (PMSMs) can secure higher power density and efficiency compared to induction motors, but have disadvantages in that the materials required for manufacturing are expensive and design is somewhat difficult compared to induction motors. Considering these problems, in this paper, we suggest that a small and lightweight semiconductor transformer is applied, and a simple structure, high torque, low cost SRM can be applied in accordance with the requirements such as weight reduction and high efficiency of railroad vehicles. content.

Performances of SRM for LSEV

  • Ahn Jin-Woo;Kim Tae-Hyoung;Lee Dong-Hee
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.45-54
    • /
    • 2005
  • This paper presents an application of SR drives for LSEV's(Low Speed Electric Vehicles) which are used for golf and leisure. Two types of 5[HP] SRM's and its drive system are designed and tested. In order to be energy saving and have effective braking during deceleration, a multi-level inverter is proposed. For the precise switching angle control, a new type of analog encoder is proposed. A current control is adopted for soft starting and an angle control is adopted at high speed to increase efficiency. Drive characteristics and performance are shown with test results.

Sensorless driving strategy of Single-Phase Hybrid SRM basing on Back-EMF detection (역기전력을 이용한 단상 하이브리드 SRM의 위치 추정 방법)

  • Tang, Ying;Lee, Donghee;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.521-522
    • /
    • 2016
  • This paper presents a novel scheme to estimate the rotor position of a single-phase hybrid switched reluctance motor (HSRM). The proposed method uses the differential of back-EMF within a position region to estimate rotor position. By detecting the crossing-zero signal of back-EMF differential value, the minimum position of back-EMF corresponding to an absolute rotor position can be captured and used for position estimation four times in every mechanical rotation. In this way, a sensorless operation with adjustable turn on/off angle can be achieved without substantial computation. For the starting, two current comparators are adopted. The experimental verification using a prototype drive system is provided to demonstrate the viability of the proposed sensorless scheme.

  • PDF