• Title/Summary/Keyword: switched reluctance motor (SRM)

Search Result 554, Processing Time 0.02 seconds

A Switched Reluctance Motor for Single Phase Drive (단상구동 Switched Reluctance Motor의 해석)

  • Lim, Jun-Young;Kim, Hyung-Sup;Oh, Jae-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.1951-1953
    • /
    • 1997
  • A switched reluctance motor (SRM) has very simple structure and robustness. Generally, for driving SRM, several (6-8) switching devices are required. This is weakpoint for reducing the cost of SRM drive. In This paper, we simulate the single phase and three phase SRM, and we compare the performance or single phase SRM with that of three phase SRM through experiment. Finally we suggest the appropriate application of single phase SRM.

  • PDF

A Study on Single Position Driving Meethod of Switched Reluctance Motor (Switched Reluctance Motor의 Single Position Sensor 구동에 관한연구)

  • 정윤철
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.709-712
    • /
    • 2000
  • In general three position sensors are needed to drive three phases SRM. Single position sensor driving method for three phases Switched Reluctance Motor(SRM) is proposed in this paper. By using single position sensor the cost of SRM is reduced. But position sensor the cost of SRM is reduced. But position detection at the staring is needed for single position sensor driving method. In this paper we propose the active align method to detect the relative position of rotor to three phases and align to the nearest phase. We proved the validity of the method by experiment and compare with other method.

  • PDF

Maximization average torque control of Switched Reluctance Motor using least square method (최소자승법을 이용한 Switched Reluctance Motor의 최대 평균토오크 제어)

  • 김춘삼;정연석
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.5
    • /
    • pp.61-65
    • /
    • 2002
  • RM(Switched Reluctance Motor)'s Torque is generated by phase-current and inductance profile. A new analytical concept is proposed to determine the turn-off angle for maximization of the torque output. This paper describes a new method to maximization the average torque of a current control Switched Reluctance Motor. It is based on the simplified turn-off angle equation using least square method. Simulations carried out on a three-phase 6/4 pole SRM justify the algorithm is described. The suggested maximization average torque is verified by simulation in this paper.

Characteristic Analysis of Single Phase SRM on Pole Ratio (극호비에 따른 단상 SRM의 토오크 특성 해석)

  • Lee, Jong-Han;Lee, Eun-Woong;Lee, Chung-Won
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.690-692
    • /
    • 2003
  • The single phase switched reluctance motor has been studied and developed actively in the various applications with several kinds and forms because of the developments of the design technique by using the computer and of the driving technique power electronic technology, which has the merits of a simple and robust structure, and first of all reducing the number of the switching devices in comparison with poly phase switched reluctance motor. And also, the studies are making progess to substitute the switched reluctance motor for single phase induction motor. In the previous studies, the single phase switched reluctance motor for the drive of blower is designed with the design theory of the conventional rotating electric machine and poly phase switched reluctance motor. In this paper, we intend to select the optimal pole arc and pole pitch ratio by the FEM analysis, because the pole arc and pole pitch are very important factor to determine the characteristics of switched reluctance motor.

  • PDF

Driving of Switched Reluctance Motor to Reduce Torque Ripple (맥동 토오크 저감을 위한 스위치드 리럭턴스 전동기 구동에 관한 연구)

  • 오인석;성세진
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.49-56
    • /
    • 1997
  • Switched Reluctance Motors(SRMs) have a considerable inherent torque ripple due to the driving characteristics of pulse current waveform and the nonlinear variation inductance profile. This paper describes a current shape characteristics to effect a torque ripple reduction, and one pulse mode switching control method is proposed to minimize torque ripple of a switched reluctance motor regardless of speed and load condition by regulating tow parameters, such as, advance angle and exciting voltage. The experiments are performed to verify the capability of proposed switching method on 6/4 salient type SRM.

  • PDF

Modeling and Characteristics of Switched Reluctance Motor (SRM) through Machine Language (기계언어를 통한 Switched Reluctance Motor(SRM)의 Modeling과 특성)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.117-122
    • /
    • 2021
  • Permanent magnet synchronous motors can secure high power density and efficiency, but have problems in that the materials required for manufacturing are expensive and design is somewhat more difficult than induction motors. Therefore, it is necessary to develop an optimal motor that considers both efficiency and maintenance convenience and related control research. In addition, driving by a practical motor leads to a request to increase the highest efficiency in a narrow rated range, an increase in average efficiency in the entire electric driving range, and an increase in average output. Due to this movement, a reluctance motor that does not require a permanent magnet is being considered as an alternative. In this paper, in line with the issues of the times that require the development of future technology that can replace rare earth permanent magnet motors and the technological preemption of rare earth reduction motors and rare earth motors, switched reluctance motors without permanent magnet For motor, SRM), modeling through machine language (C language) and the characteristics of SRM accordingly are to be studied.

Modeling of Switched Reluctance Motor (SRM) Drive and Control System using Rotor Position Information Sensor (회전자 위치정보 센서를 이용한 Switched Reluctance Motor (SRM)의 구동 및 제어 시스템 Modeling)

  • Jeong, Sungin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.137-142
    • /
    • 2021
  • In recent years, permanent magnets such as IPM (Interior Permanent Magnet) motors or SPM (Surface Permanent Magnet) motors that can obtain high efficiency and power density by inserting rare earth permanent magnets into the rotor are used. Research on the used electric motor is being actively conducted. Since it uses a permanent magnet, it has the advantage of high efficiency and high power density compared to reluctance motors and induction motors, but by inserting a permanent magnet into the rotor, it operates at high speeds and decreases reliability due to demagnetization of the permanent magnets, and increases the cost of rare earth metals. In this paper, in accordance with the development of future technology that can replace rare-earth permanent magnet motors and technological preoccupation of rare-earth reduction type motors and de-rare-earth motors, switched reluctance motors that do not require permanent magnets (Switched Reluvtance Motors) Motor, SRM) to drive driving control. Using the 3-phase SRM library provided by the PSIM simulation program, we will study the driving and control system modeling of SRM using the rotor position information sensor.

Control of SRM with Modified C-dump Converter in Cooling System of Automobiles (Modified C-dump 컨버터를 이용한 자동차 냉각시스템 SRM 제어)

  • Yoon, Yong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1297-1302
    • /
    • 2017
  • Recently, SRMs are used in automobiles for power assistant steering, accessory motion control and traction drives. Especially in the motion control and traction drives, safety and efficiency are of paramount importance. The paper describes the essential elements faced in designing and constructing driving circuits for a switched reluctance motor for automobiles. An important factor in the selection of a motor and a drive for industrial application is the cost. The switched reluctance motor(SRM) is a simple, low-cost, and robust motor suitable for variable-speed as well as servo-type applications. With relatively simple converter and control requirements, the SRM is gaining an increasing attention in the drive industry. This paper presents a modified C-dump converter for Switched Reluctance Motor (SRM) machine application in the cooling system of automobiles. The experiments are performed to verify the capability of applicate control method on 6/4 salient type SRM.

Characteristics Analysis of Short Flux Path Switched Reluctance Motor

  • Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.38-45
    • /
    • 2012
  • A novel kind of switched reluctance motor (SRM) with short flux path is proposed in this paper. Phase excitation in the SRM gives short flux paths, hence reducing the magnetomotive force required to drive the machine, resulting in significant reduction of copper wire and core losses compared to the typical SRM with diametric circulation of magnetic flux. To verify the performance, the characteristics analysis of a double-stator SRM, a 6/5 SRM with C-core structure, and a 4/5 two-phase SRM, which all have short flux paths, and a comparison with conventional SR motors are executed. The comparison demonstrates that the proposed motor offers some advantages in terms of torque and efficiency.

Development of a Switched Reluctance Motor-based Electric AC Compressor Drive for HEV/EV Applications

  • Kim, Jaehyuck;Jeong, Yong-Hoe;Jeon, Yong-Hee;Kang, Jun-Ho;Lee, Seunghun;Park, Jang-Yeop
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.282-290
    • /
    • 2014
  • This paper discusses the development of a 3.5 kW switched reluctance motor (SRM)-based electric air-conditioning (AC) compressor, focusing primarily on the design aspects of the SRM and the integrated controller. In addition to the increased price of rare-earth magnets, SRM's operation capability at high speed and high temperature makes the SRM a viable alternative to the permanent magnet motor for electrically driven automotive air conditioning compressors. A compact and energy efficient scroll compressor is designed and constructed. Two feasible SRM topologies are considered, in terms of efficiency, torque ripple, and acoustic noise. Compact drive electronics are designed and employed to drive the SRM-based compressor. The static and dynamic performance is validated by simulation and experiment.