• Title/Summary/Keyword: switch genes

Search Result 28, Processing Time 0.021 seconds

irrE, an Exogenous Gene from Deinococcus radiodurans, Improves the Growth of and Ethanol Production by a Zymomonas mobilis Strain Under Ethanol and Acid Stresses

  • Zhang, Ying;Ma, Ruiqiang;Zhao, Zhonglin;Zhou, Zhengfu;Lu, Wei;Zhang, Wei;Chen, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.7
    • /
    • pp.1156-1162
    • /
    • 2010
  • During ethanol fermentation, bacterial strains may encounter various stresses, such as ethanol and acid shock, which adversely affect cell viability and the production of ethanol. Therefore, ethanologenic strains that tolerate abiotic stresses are highly desirable. Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation, ultraviolet light, and desiccation, and therefore constitute an important pool of extreme resistance genes. The irrE gene encodes a general switch responsible for the extreme radioresistance of D. radiodurans. Here, we present evidence that IrrE, acting as a global regulator, confers high stress tolerance to a Zymomonas mobilis strain. Expression of the gene protected Z. mobilis cells against ethanol, acid, osmotic, and thermal shocks. It also markedly improved cell viability, the expression levels and enzyme activities of pyruvate decarboxylase and alcohol dehydrogenase, and the production of ethanol under both ethanol and acid stresses. These data suggest that irrE is a potentially promising gene for improving the abiotic stress tolerance of ethanologenic bacterial strains.

Cofactor Regeneration Using Permeabilized Escherichia coli Expressing NAD(P)+-Dependent Glycerol-3-Phosphate Dehydrogenase

  • Rho, Ho Sik;Choi, Kyungoh
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1346-1351
    • /
    • 2018
  • Oxidoreductases are effective biocatalysts, but their practical use is limited by the need for large quantities of NAD(P)H. In this study, a whole-cell biocatalyst for NAD(P)H cofactor regeneration was developed using the economical substrate glycerol. This cofactor regeneration system employs permeabilized Escherichia coli cells in which the glpD and gldA genes were deleted and the gpsA gene, which encodes $NAD(P)^+-dependent$ glycerol-3-phosphate dehydrogenase, was overexpressed. These manipulations were applied to block a side reaction (i.e., the conversion of glycerol to dihydroxyacetone) and to switch the glpD-encoding enzyme reaction to a gpsA-encoding enzyme reaction that generates both NADH and NADPH. We demonstrated the performance of the cofactor regeneration system using a lactate dehydrogenase reaction as a coupling reaction model. The developed biocatalyst involves an economical substrate, bifunctional regeneration of NAD(P)H, and simple reaction conditions as well as a stable environment for enzymes, and is thus applicable to a variety of oxidoreductase reactions requiring NAD(P)H regeneration.

Targeting Cancer Metabolism - Revisiting the Warburg Effects

  • Tran, Quangdon;Lee, Hyunji;Park, Jisoo;Kim, Seon-Hwan;Park, Jongsun
    • Toxicological Research
    • /
    • v.32 no.3
    • /
    • pp.177-193
    • /
    • 2016
  • After more than half of century since the Warburg effect was described, this atypical metabolism has been standing true for almost every type of cancer, exhibiting higher glycolysis and lactate metabolism and defective mitochondrial ATP production. This phenomenon had attracted many scientists to the problem of elucidating the mechanism of, and reason for, this effect. Several models based on oncogenic studies have been proposed, such as the accumulation of mitochondrial gene mutations, the switch from oxidative phosphorylation respiration to glycolysis, the enhancement of lactate metabolism, and the alteration of glycolytic genes. Whether the Warburg phenomenon is the consequence of genetic dysregulation in cancer or the cause of cancer remains unknown. Moreover, the exact reasons and physiological values of this peculiar metabolism in cancer remain unclear. Although there are some pharmacological compounds, such as 2-deoxy-D-glucose, dichloroacetic acid, and 3-bromopyruvate, therapeutic strategies, including diet, have been developed based on targeting the Warburg effect. In this review, we will revisit the Warburg effect to determine how much scientists currently understand about this phenomenon and how we can treat the cancer based on targeting metabolism.

Development of Candida albicans Biofilms Is Diminished by Paeonia lactiflora via Obstruction of Cell Adhesion and Cell Lysis

  • Lee, Heung-Shick;Kim, Younhee
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.482-490
    • /
    • 2018
  • Candida albicans infections are often problematic to treat owing to antifungal resistance, as such infections are mostly associated with biofilms. The ability of C. albicans to switch from a budding yeast to filamentous hyphae and to adhere to host cells or various surfaces supports biofilm formation. Previously, the ethanol extract from Paeonia lactiflora was reported to inhibit cell wall synthesis and cause depolarization and permeabilization of the cell membrane in C. albicans. In this study, the P. lactiflora extract was found to significantly reduce the initial stage of C. albicans biofilms from 12 clinical isolates by 38.4%. Thus, to assess the action mechanism, the effect of the P. lactiflora extract on the adhesion of C. albicans cells to polystyrene and germ tube formation was investigated using a microscopic analysis. The density of the adherent cells was diminished following incubation with the P. lactiflora extract in an acidic medium. Additionally, the P. lactiflora-treated C. albicans cells were mostly composed of less virulent pseudohyphae, and ruptured debris was found in the serum-containing medium. A quantitative real-time PCR analysis indicated that P. lactiflora downregulated the expression of C. albicans hypha-specific genes: ALS3 by 65% (p = 0.004), ECE1 by 34.9% (p = 0.001), HWP1 by 29.2% (p = 0.002), and SAP1 by 37.5% (p = 0.001), matching the microscopic analysis of the P. lactiflora action on biofilm formation. Therefore, the current findings demonstrate that the P. lactiflora ethanol extract is effective in inhibiting C. albicans biofilms in vitro, suggesting its therapeutic potential for the treatment of biofilm-associated infections.

Novel Dioxygenases, HIF-α Specific Prolyl-hydroxylase and Asparanginyl-hydroxylase: O2 Switch for Cell Survival

  • Park, Hyun-Sung
    • Toxicological Research
    • /
    • v.24 no.2
    • /
    • pp.101-107
    • /
    • 2008
  • Studies on hypoxia-signaling pathways have revealed novel Fe(II) and $\alpha$-ketoglutarate-dependent dioxygenases that hydroxylate prolyl or asparaginyl residues of a transactivator, Hypoxia-Inducible $Factor-\alpha(HIF-\alpha)$ protein. The recognition of these unprecedented dioxygenases has led to open a new paradigm that the hydroxylation mediates an instant post-translational modification of a protein in response to the changes in cellular concentrations of oxygen, reducing agents, or $\alpha$-ketoglutarate. Activity of $HIF-\alpha$ is repressed by two hydroxylases. One is $HIF-\alpha$ specific prolyl-hydroxylases, referred as prolyl-hydroxylase domain(PHD). The other is $HIF-\alpha$ specific asparaginyl-hydroxylase, referred as factor-inhibiting HIF-1(FIH-1). The facts (i) that many dioxygenases commonly use molecular oxygen and reducing agents during detoxification of xenobiotics, (ii) that detoxification reaction produces radicals and reactive oxygen species, and (iii) that activities of both PHD and FIH-1 are regulated by the changes in the balance between oxygen species and reducing agents, imply the possibility that the activity of $HIF-\alpha$ can be increased during detoxification process. The importance of $HIF-\alpha$ in cancer and ischemic diseases has been emphasized since its target genes mediate various hypoxic responses including angiogenesis, erythropoiesis, glycolysis, pH balance, metastasis, invasion and cell survival. Therefore, activators of PHDs and FIH-1 can be potential anticancer drugs which could reduce the activity of HIF, whereas inhibitors, for preventing ischemic diseases. This review highlights these novel dioxygenases, PHDs and FIH-1 as specific target against not only cancers but also ischemic diseases.

Bacterial Stringent Signal Directs Virulence and Survival in Vibrio cholerae.

  • Oh, Young Taek;Kim, Hwa Young;Yoon, Sang Sun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.8-8
    • /
    • 2019
  • The stringent response (SR) is characterized as a bacterial defense mechanism in response to various growth-inhibiting stresses. It is activated by accumulation of a small nucleotide regulator, (p)ppGpp, and induces global changes in bacterial transcription and translation. Recent work from our group has shown that (p)ppGpp plays a critical role in virulence and survival in Vibrio cholerae. The genes, relA and relV, are involved in the production of (p)ppGpp, while the spoT gene encodes an enzyme that hydrolyzes it in V. cholerae. A mutant strain defective in (p)ppGpp production (i.e. ${\Delta}relA{\Delta}relV{\Delta}spoT$ mutant) lost the ability to produce cholera toxin (CT) and lost their viability due to uncontrolled production of organic acids, when grown with extra glucose. In contrast, the ${\Delta}relA{\Delta}spoT$ mutant, a (p)ppGpp overproducer strain, produced enhanced level of CT and exhibited better growth in glucose supplemented media via glucose metabolic switch from organic fermentation to acetoin, a neutral fermentation end product, fermentation. These findings indicates that (p)ppGpp, in addition to its well-known role as a SR mediator, positively regulates CT production and maintenance of growth fitness in V. cholerae. This implicates SR as a promising drug target, inhibition of which may possibly downregulate V. cholerae virulence and survival fitness. Therefore, we screened a chemical library and identified a compound that induces medium acidification (termed iMAC) and thereby loss of wild type V. cholerae viability under glucose-rich conditions. Further, we present a potential mechanism by which the compound inhibits (p)ppGpp accumulation. Together, these results indicate that iMAC treatment causes V. cholerae cells to produce significantly less (p)ppGpp, an important regulator of the bacterial virulence and survival response, and further suggesting that it has a therapeutic potential to be developed as a novel antibacterial agent against cholera.

  • PDF

Improving the Safety of Mesenchymal Stem Cell-Based Ex Vivo Therapy Using Herpes Simplex Virus Thymidine Kinase

  • Bashyal, Narayan;Lee, Tae-Young;Chang, Da-Young;Jung, Jin-Hwa;Kim, Min Gyeong;Acharya, Rakshya;Kim, Sung-Soo;Oh, Il-Hoan;Suh-Kim, Haeyoung
    • Molecules and Cells
    • /
    • v.45 no.7
    • /
    • pp.479-494
    • /
    • 2022
  • Human mesenchymal stem cells (MSCs) are multipotent stem cells that have been intensively studied as therapeutic tools for a variety of disorders. To enhance the efficacy of MSCs, therapeutic genes are introduced using retroviral and lentiviral vectors. However, serious adverse events (SAEs) such as tumorigenesis can be induced by insertional mutagenesis. We generated lentiviral vectors encoding the wild-type herpes simplex virus thymidine kinase (HSV-TK) gene and a gene containing a point mutation that results in an alanine to histidine substitution at residue 168 (TK(A168H)) and transduced expression in MSCs (MSC-TK and MSC-TK(A168H)). Transduction of lentiviral vectors encoding the TK(A168H) mutant did not alter the proliferation capacity, mesodermal differentiation potential, or surface antigenicity of MSCs. The MSC-TK(A168H) cells were genetically stable, as shown by karyotyping. MSC-TK(A168H) responded to ganciclovir (GCV) with an half maximal inhibitory concentration (IC50) value 10-fold less than that of MSC-TK. Because MSC-TK(A168H) cells were found to be non-tumorigenic, a U87-TK(A168H) subcutaneous tumor was used as a SAE-like condition and we evaluated the effect of valganciclovir (vGCV), an oral prodrug for GCV. U87-TK(A168H) tumors were more efficiently ablated by 200 mg/kg vGCV than U87-TK tumors. These results indicate that MSC-TK(A168H) cells appear to be pre-clinically safe for therapeutic use. We propose that genetic modification with HSV-TK(A168H) makes allogeneic MSC-based ex vivo therapy safer by eliminating transplanted cells during SAEs such as uncontrolled cell proliferation.

Cloning and Transcription Analysis of Sporulation Gene (spo5) in Schizosaccharomyces pombe (Schizosaccharomyces bombe 포자형성 유전자(spo5)의 Cloning 및 전사조절)

  • 김동주
    • The Korean Journal of Food And Nutrition
    • /
    • v.15 no.2
    • /
    • pp.112-118
    • /
    • 2002
  • Sporulation in the fission yeast Schizosaccharomyces pombe has been regarded as an important model of cellular development and differentiation. S. pombe cells proliferate by mitosis and binary fission on growth medium. Deprivation of nutrients especially nitrogen sources, causes the cessation of mitosis and initiates sexual reproduction by matting between two sexually compatible cell types. Meiosis is then followed in a diploid cell in the absence of nitrogen source. DNA fragment complemented with the mutations of sporulation gene was isolated from the S. pombe gene library constructed in the vector, pDB 248' and designated as pDB(spo5)1. We futher analyzed six recombinant plasmids, pDB(spo5)2, pDB(spo5)3, pDB(spo5)4, pDB(spo5)5, pDB (spo5)6, pDB(spo5)7 and found each of these plasmids is able to rescue the spo5-2, spo5-3, spo5-4, spo5-5, spo5-6, spo5-7 mutations, respectively. Mapping of the integrated plasmid into the homologous site of the S. pombe chromosomes demonstrated that pDB(spo5)1, and pDB(spu5)Rl contained the spo5 gene. Transcripts of spo5 gene were analyzed by Northern hybridization. Two transcripts of 3.2 kb and 2.5kb were detected with 5kb Hind Ⅲ fragment containing a part of the spo5 gene as a probe. The small mRNA(2.5kb) appeared only when a wild-type strain was cultured in the absence of nitrogen source in which condition the large mRNA (3.2kb) was produced constitutively. Appearance of a 2.5kb spo5-mRNA depends upon the function of the meil, mei2 and mei3 genes.