References
- Baranova, O., Miranda, L.F., Pichiule, P., Dragatsis, I., Johnson, R.S. and Chavez, J.C. (2007). Neuron-specific inactivation of the hypoxia inducible factor 1 alpha increases brain injury in a mouse model of transient focal cerebral ischemia. J Neurosci., 27, 6320-6332 https://doi.org/10.1523/JNEUROSCI.0449-07.2007
- Berra, E., Benizri, E., Ginouves, A., Volmat, V., Roux, D. and Pouyssegur, J. (2003). HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF- 1alpha in normoxia. EMBO J., 22, 4082-4090 https://doi.org/10.1093/emboj/cdg392
- Brahimi-Horn, M.C. and Pouyssegur, J. (2007). Oxygen, a source of life and stress. FEBS Lett., 581, 3582-3591 https://doi.org/10.1016/j.febslet.2007.06.018
- Brune, B. and Zhou, J. (2007). Nitric oxide and superoxide: Interference with hypoxic signaling. Cardiovasc Res., 75, 275-282 https://doi.org/10.1016/j.cardiores.2007.03.005
- Choi, K.O., Lee, T., Lee, N., Kim, J.H., Yang, E.G., Yoon, J.M., Kim, J.H., Lee, T.G. and Park, H. (2005). Inhibition of the catalytic activity of hypoxia-inducible factor-1alpha-prolylhydroxylase 2 by a MYND-type zinc finger. Mol. Pharmacol., 68, 1803-1809
- Choi, H.J., Song, B.J., Gong, Y.D., Gwak, W.J. and Soh, Y. (2008). Rapid degradation of hypoxia-inducible factor-1alpha by KRH102053, a new activator of prolyl hydroxylase 2. Br. J. Pharmacol., 154, 114-125 https://doi.org/10.1038/bjp.2008.70
- Choi, S.M., Choi, K.O., Park, Y.K., Cho, H., Yang, E.G. and Park, H. (2006). Clioquinol, a Cu(II)/Zn(II) chelator, inhibits both ubiquitination and asparagine hydroxylation of hypoxiainducible factor-1alpha, leading to expression of vascular endothelial growth factor and erythropoietin in normoxic cells. J. Biol. Chem., 281, 34056-34063 https://doi.org/10.1074/jbc.M603913200
- Cockman, M.E., Lancaster, D.E., Stolze, I.P., Hewitson, K.S., McDonough, M.A., Coleman, M.L., Coles, C.H., Yu, X., Hay, R.T., Ley, S.C., Pugh, C.W., Oldham, N.J., Masson, N., Schofield, C.J. and Ratcliffe, P.J. (2006). Posttranslational hydroxylation of ankyrin repeats in IkappaB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proc. Natl. Acad. Sci. USA, 103, 14767-14772
- Crews, S.T. (1998). Control of cell lineage-specific development and transcription by bHLH-PAS proteins. Genes Dev., 12, 607-620 https://doi.org/10.1101/gad.12.5.607
- Epstein, A.C., Gleadle, J.M., McNeill, L.A., Hewitson, K.S., O'Rourke, J., Mole, D.R., Mukherji, M., Metzen, E., Wilson, M.I., Dhanda, A., Tian, Y.M., Masson, N., Hamilton, D.L., Jaakkola, P., Barstead, R., Hodgkin, J., Maxwell, P.H., Pugh, C.W., Schofield, C.J. and Ratcliffe, P.J. (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell, 107, 43-54 https://doi.org/10.1016/S0092-8674(01)00507-4
- Esteban, M.A. and Maxwell, P.H. (2005). HIF, a missing link between metabolism and cancer. Nat. Med., 10, 1047-1048 https://doi.org/10.1038/nm1004-1047
- Esteban, M.A., Tran, M.G., Harten, S.K., Hill, P., Castellanos, M.C., Chandra, A., Raval, R., O'brien, T.S. and Maxwell, P.H. (2006). Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Res., 66, 3567-3575 https://doi.org/10.1158/0008-5472.CAN-05-2670
- Gao, P., Zhang, H., Dinavahi, R., Li, F., Xiang, Y., Raman, V., Bhujwalla, Z.M., Felsher, D.W., Cheng, L., Pevsner, J., Lee, L.A., Semenza, G.L. and Dang, C.V. (2007). HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell, 12, 230-238 https://doi.org/10.1016/j.ccr.2007.08.004
- Grimm, C., Wenzel, A., Groszer, M., Mayser, H., Seeliger, M., Samardzija, M., Bauer, C., Gassmann, M. and Reme, C.E. (2002). HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nat Med., 8, 718-724 https://doi.org/10.1038/nm723
- Ginouves, A., Ilc, K., Macías, N., Pouyssegur, J. and Berra, E. (2008). PHDs overactivation during chronic hypoxia 'desensitizes' HIF alpha and protects cells from necrosis. Proc. Natl. Acad. Sci. USA, 105, 4745-4750
- Hewitson, K.S., McNeill, L.A., Riordan, M.V., Tian, Y.M., Bullock, A.N., Welford, R.W., Elkins, J.M., Oldham, N.J., Bhattacharya, S., Gleadle, J.M., Ratcliffe, P.J., Pugh, C.W. and Schofield, C.J. (2002). Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J. Biol. Chem., 277, 26351-26355 https://doi.org/10.1074/jbc.C200273200
- Hewitson, K.S., Lienard, B.M., McDonough, M.A., Clifton, I.J., Butler, D., Soares, A.S., Oldham, N.J., McNeill, L.A. and Schofield, C.J. (2007). Structural and mechanistic studies on the inhibition of the hypoxia-inducible transcription factor hydroxylases by tricarboxylic acid cycle intermediates. J. Biol. Chem., 282, 3293-3301 https://doi.org/10.1074/jbc.M608337200
- Hirsila, M., Koivunen, P., Gunzler, V., Kivirikko, K.I. and Myllyharju, J. (2003). Characterization of the human prolyl 4- hydroxylases that modify the hypoxia-inducible factor. J. Biol. Chem., 278, 30772-30780 https://doi.org/10.1074/jbc.M304982200
- Hirsilä, M., Koivunen, P., Xu, L., Seeley, T., Kivirikko, K.I. and Myllyharju, J. (2005). Effect of desferrioxamine and metals on the hydroxylases in the oxygen sensing pathway. FASEB J., 19, 1308-1310 https://doi.org/10.1096/fj.04-3399fje
- Holmquist-Mengelbier, L., Fredlund, E., Lofstedt, T., Noguera, R., Navarro, S., Nilsson, H., Pietras, A., Vallon-Christersson, J., Borg, A., Gradin, K., Poellinger, L. and Pahlman, S. (2006). Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell, 10, 413-423 https://doi.org/10.1016/j.ccr.2006.08.026
- Isaacs. J.S., Jung, Y.J., Mole, D.R., Lee, S., Torres-Cabala, C., Chung, Y.L., Merino, M., Trepel, J., Zbar, B., Toro, J., Ratcliffe, P.J., Linehan, W.M. and Neckers, L. (2005). HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell, 8, 143-153 https://doi.org/10.1016/j.ccr.2005.06.017
- Jewell, U.R., Kvietikova, I., Scheid, A., Bauer, C., Wenger, R.H. and Gassmann, M. (2001). Induction of HIF-1alpha in response to hypoxia is instantaneous. FASEB J., 15, 1312-1314 https://doi.org/10.1096/fj.00-0732fje
- Kasuno, K., Takabuchi, S., Fukuda, K., Kizaka-Kondoh, S., Yodoi, J., Adachi, T., Semenza, G.L. and Hirota, K. (2004). Nitric oxide induces hypoxia-inducible factor 1 activation that is dependent on MAPK and phosphatidylinositol 3- kinase signaling. J. Biol. Chem., 279, 2550-2558 https://doi.org/10.1074/jbc.M308197200
- Koike, T., Kimura, N., Miyazaki, K., Yabuta, T., Kumamoto, K., Takenoshita, S., Chen, J., Kobayashi, M., Hosokawa, M., Taniguchi, A., Kojima, T., Ishida, N., Kawakita, M., Yamamoto, H., Takematsu, H., Suzuki, A., Kozutsumi, Y. and Kannagi, R. (2004). Hypoxia induces adhesion molecules on cancer cells: A missing link between Warburg effect and induction of selectin-ligand carbohydrates. Proc. Natl. Acad. Sci. USA, 101, 8132-8137
- Klose, R.J., Kallin, E.M. and Zhang, Y. (2006). JmjC-domaincontaining proteins and histone demethylation. Nat. Rev. Genet., 7, 715-727 https://doi.org/10.1038/nrg1945
- Koivunen, P., Hirsila, M., Gunzler, V., Kivirikko, K.I. and Myllyharju, J. (2004). Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases. J. Biol. Chem., 279, 9899-9904 https://doi.org/10.1074/jbc.M312254200
- Koivunen, P., Hirsilä, M., Remes, A.M., Hassinen, I.E, Kivirikko, K.I. and Myllyharju, J. (2007). Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J. Biol. Chem., 282, 4524-4532 https://doi.org/10.1074/jbc.M610415200
- Lando, D., Peet, D.J., Gorman, J.J., Whelan, D.A., Whitelaw, M.L. and Bruick, R.K. (2002). FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev., 16, 1466-1471 https://doi.org/10.1101/gad.991402
- Li, F., Sonveaux, P., Rabbani, Z.N., Liu, S., Yan, B., Huang, Q., Vujaskovic, Z., Dewhirst, M.W. and Li, C.Y. (2007). Regulation of HIF-1alpha stability through S-nitrosylation. Mol. Cell, 26, 63-74 https://doi.org/10.1016/j.molcel.2007.02.024
- Lee, C., Kim, S.J., Jeong, D.G., Lee, S.M. and Ryu, S.E. (2003). Structure of human FIH-1 reveals a unique active site pocket and interaction sites for HIF-1 and von Hippel- Lindau. J. Biol. Chem., 278, 7558-7563 https://doi.org/10.1074/jbc.M210385200
- McNeill, L.A., Hewitson, K.S., Claridge, T.D., Seibel, J.F., Horsfall, L.E. and Schofield, C.J. (2002). Hypoxia-inducible factor asparaginyl hydroxylase (FIH-1) catalyses hydroxylation at the beta-carbon of asparagine-803. Biochem. J., 367, 571-575 https://doi.org/10.1042/BJ20021162
- Mahon, P.C., Hirota, K. and Semenza, G.L. (2001). FIH-1: A novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev., 15, 2675-2686 https://doi.org/10.1101/gad.924501
- Masson, N, Willam, C., Maxwell, P.H., Pugh, C.W. and Ratcliffe, P.J. (2001). Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J., 20, 5197-5206 https://doi.org/10.1093/emboj/20.18.5197
- Nangaku, M., Kojima. I., Tanaka, T., Ohse, T., Kato, H. and Fujita, T. (2006). Novel drugs and the response to hypoxia: HIF stabilizers and prolyl hydroxylase. Recent Patents Cardiovasc Drug Discov., 1, 129-139 https://doi.org/10.2174/157489006777442522
- Natarajan, R., Salloum, F.N., Fisher, B.J., Kukreja, R.C. and Fowler, A.A. 3rd. (2006). Hypoxia inducible factor-1 activation by prolyl 4-hydroxylase-2 gene silencing attenuates myocardial ischemia reperfusion injury. Circ. Res., 98, 133-140 https://doi.org/10.1161/01.RES.0000197816.63513.27
- Ng, S.S., Kavanagh, K.L., McDonough. M.A., Butler, D., Pilka, E.S., Lienard, B.M., Bray, J.E., Savitsky, P., Gileadi, O., von Delft, F., Rose, N.R., Offer, J., Scheinost, J.C., Borowski, T., Sundstrom, M., Schofield, C.J. and Oppermann, U. (2007). Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity. Nature, 448, 87-91 https://doi.org/10.1038/nature05971
- Nytko, K.J., Spielmann, P., Camenisch, G., Wenger, R.H. and Stiehl, D.P. (2007). Regulated function of the prolyl-4- hydroxylase domain (PHD) oxygen sensor proteins. Antioxid Redox Signal, 9, 1329-1338 https://doi.org/10.1089/ars.2007.1683
-
Park, Y.K., Ahn, D.R., Oh, M., Lee, T., Yang, E.G., Son, M. and Park, H. (2008). The nitric oxide donor, snap, stabilizes trans-active hypoxia-inducible factor-
$1{\alpha}$ by inhibiting vhl recruitment and asparagine hydroxylation. Mol. Pharmacol. (in press) - Pollard, P.J., Briere, J.J., Alam, N.A., Barwell, J., Barclay, E., Wortham, N.C., Hunt, T., Jeffery, R., Seedhar, P., Barwell, J., Latif, F., Gleeson, MJ., Hodgson, S.V., Stamp, G.W., Tomlinson, I.P. and Maher, E.R. (2005). Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum. Mol. Genet, 14, 2231-2239 https://doi.org/10.1093/hmg/ddi227
- Pouyssegur, J., Dayan, F. and Mazure, N.M. (2006). Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature, 441, 437-443 https://doi.org/10.1038/nature04871
- Selak, M.A., Armour, S.M., MacKenzie, E.D., Boulahbel, H., Watson, D.G., Mansfield, K.D., Pan, Y., Simon, M.C., Thompson, C.B. and Gottlieb, E. (2005). Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIFalpha prolyl hydroxylase. Cancer Cell, 7, 77-85 https://doi.org/10.1016/j.ccr.2004.11.022
- Semenza, G.L. (2007). Hypoxia-inducible factor 1 (HIF-1) pathway. Sci. STKE, 2007, cm8
- Shin, D.H., Kim, J.H., Jung, Y.J., Kim, K.E., Jeong, J.M., Chun, Y.S. and Park, J.W. (2007). Preclinical evaluation of YC-1, a HIF inhibitor, for the prevention of tumor spreading. Cancer Lett., 255, 107-116 https://doi.org/10.1016/j.canlet.2007.03.026
- Shin, D.H., Chun, Y.S. and Park, J.W. (2008). Response: Oxygen-dependent effect of bortezomib on FIH-mediated repression of HIF-1. Blood, 111, 5259-5261 https://doi.org/10.1182/blood-2008-03-146233
- Tian, H., Hammer, R.E., Matsumoto, A.M., Russell, D.W. and McKnight, S.L. (1998). The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev., 12, 3320-3324 https://doi.org/10.1101/gad.12.21.3320
- Vuorela, A., Myllyharju, J., Nissi, R., Pihlajaniemi, T. and Kivirikko, K.I. (1997). Assembly of human prolyl 4-hydroxylase and type III collagen in the yeast pichia pastoris: formation of a stable enzyme tetramer requires coexpression with collagen and assembly of a stable collagen requires coexpression with prolyl 4-hydroxylase. EMBO J., 16, 6702-6712 https://doi.org/10.1093/emboj/16.22.6702
- Zheng, X., Linke, S., Dias, J.M., Zheng, X., Gradin, K., Wallis, T.P., Hamilton, B.R., Gustafsson, M., Ruas, J.L., Wilkins, S., Bilton, R.L., Brismar, K., Whitelaw, M.L., Pereira, T., Gorman, J.J., Ericson, J., Peet, D.J., Lendahl, U. and Poellinger, L. (2008). Interaction with factor inhibiting HIF- 1 defines an additional mode of cross-coupling between the Notch and hypoxia signaling pathways. Proc. Natl. Acad. Sci. USA, 105, 3368-3373
Cited by
- Proteomic Changes in Chick Brain Proteome Post Treatment with Lathyrus Sativus Neurotoxin, β-N-Oxalyl-L-α,β-Diaminopropionic Acid (L-ODAP): A Better Insight to Transient Neurolathyrism vol.34, pp.3, 2018, https://doi.org/10.5487/TR.2018.34.3.267