DOI QR코드

DOI QR Code

Novel Dioxygenases, HIF-α Specific Prolyl-hydroxylase and Asparanginyl-hydroxylase: O2 Switch for Cell Survival

  • Published : 2008.06.01

Abstract

Studies on hypoxia-signaling pathways have revealed novel Fe(II) and $\alpha$-ketoglutarate-dependent dioxygenases that hydroxylate prolyl or asparaginyl residues of a transactivator, Hypoxia-Inducible $Factor-\alpha(HIF-\alpha)$ protein. The recognition of these unprecedented dioxygenases has led to open a new paradigm that the hydroxylation mediates an instant post-translational modification of a protein in response to the changes in cellular concentrations of oxygen, reducing agents, or $\alpha$-ketoglutarate. Activity of $HIF-\alpha$ is repressed by two hydroxylases. One is $HIF-\alpha$ specific prolyl-hydroxylases, referred as prolyl-hydroxylase domain(PHD). The other is $HIF-\alpha$ specific asparaginyl-hydroxylase, referred as factor-inhibiting HIF-1(FIH-1). The facts (i) that many dioxygenases commonly use molecular oxygen and reducing agents during detoxification of xenobiotics, (ii) that detoxification reaction produces radicals and reactive oxygen species, and (iii) that activities of both PHD and FIH-1 are regulated by the changes in the balance between oxygen species and reducing agents, imply the possibility that the activity of $HIF-\alpha$ can be increased during detoxification process. The importance of $HIF-\alpha$ in cancer and ischemic diseases has been emphasized since its target genes mediate various hypoxic responses including angiogenesis, erythropoiesis, glycolysis, pH balance, metastasis, invasion and cell survival. Therefore, activators of PHDs and FIH-1 can be potential anticancer drugs which could reduce the activity of HIF, whereas inhibitors, for preventing ischemic diseases. This review highlights these novel dioxygenases, PHDs and FIH-1 as specific target against not only cancers but also ischemic diseases.

Keywords

References

  1. Baranova, O., Miranda, L.F., Pichiule, P., Dragatsis, I., Johnson, R.S. and Chavez, J.C. (2007). Neuron-specific inactivation of the hypoxia inducible factor 1 alpha increases brain injury in a mouse model of transient focal cerebral ischemia. J Neurosci., 27, 6320-6332 https://doi.org/10.1523/JNEUROSCI.0449-07.2007
  2. Berra, E., Benizri, E., Ginouves, A., Volmat, V., Roux, D. and Pouyssegur, J. (2003). HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF- 1alpha in normoxia. EMBO J., 22, 4082-4090 https://doi.org/10.1093/emboj/cdg392
  3. Brahimi-Horn, M.C. and Pouyssegur, J. (2007). Oxygen, a source of life and stress. FEBS Lett., 581, 3582-3591 https://doi.org/10.1016/j.febslet.2007.06.018
  4. Brune, B. and Zhou, J. (2007). Nitric oxide and superoxide: Interference with hypoxic signaling. Cardiovasc Res., 75, 275-282 https://doi.org/10.1016/j.cardiores.2007.03.005
  5. Choi, K.O., Lee, T., Lee, N., Kim, J.H., Yang, E.G., Yoon, J.M., Kim, J.H., Lee, T.G. and Park, H. (2005). Inhibition of the catalytic activity of hypoxia-inducible factor-1alpha-prolylhydroxylase 2 by a MYND-type zinc finger. Mol. Pharmacol., 68, 1803-1809
  6. Choi, H.J., Song, B.J., Gong, Y.D., Gwak, W.J. and Soh, Y. (2008). Rapid degradation of hypoxia-inducible factor-1alpha by KRH102053, a new activator of prolyl hydroxylase 2. Br. J. Pharmacol., 154, 114-125 https://doi.org/10.1038/bjp.2008.70
  7. Choi, S.M., Choi, K.O., Park, Y.K., Cho, H., Yang, E.G. and Park, H. (2006). Clioquinol, a Cu(II)/Zn(II) chelator, inhibits both ubiquitination and asparagine hydroxylation of hypoxiainducible factor-1alpha, leading to expression of vascular endothelial growth factor and erythropoietin in normoxic cells. J. Biol. Chem., 281, 34056-34063 https://doi.org/10.1074/jbc.M603913200
  8. Cockman, M.E., Lancaster, D.E., Stolze, I.P., Hewitson, K.S., McDonough, M.A., Coleman, M.L., Coles, C.H., Yu, X., Hay, R.T., Ley, S.C., Pugh, C.W., Oldham, N.J., Masson, N., Schofield, C.J. and Ratcliffe, P.J. (2006). Posttranslational hydroxylation of ankyrin repeats in IkappaB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proc. Natl. Acad. Sci. USA, 103, 14767-14772
  9. Crews, S.T. (1998). Control of cell lineage-specific development and transcription by bHLH-PAS proteins. Genes Dev., 12, 607-620 https://doi.org/10.1101/gad.12.5.607
  10. Epstein, A.C., Gleadle, J.M., McNeill, L.A., Hewitson, K.S., O'Rourke, J., Mole, D.R., Mukherji, M., Metzen, E., Wilson, M.I., Dhanda, A., Tian, Y.M., Masson, N., Hamilton, D.L., Jaakkola, P., Barstead, R., Hodgkin, J., Maxwell, P.H., Pugh, C.W., Schofield, C.J. and Ratcliffe, P.J. (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell, 107, 43-54 https://doi.org/10.1016/S0092-8674(01)00507-4
  11. Esteban, M.A. and Maxwell, P.H. (2005). HIF, a missing link between metabolism and cancer. Nat. Med., 10, 1047-1048 https://doi.org/10.1038/nm1004-1047
  12. Esteban, M.A., Tran, M.G., Harten, S.K., Hill, P., Castellanos, M.C., Chandra, A., Raval, R., O'brien, T.S. and Maxwell, P.H. (2006). Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Res., 66, 3567-3575 https://doi.org/10.1158/0008-5472.CAN-05-2670
  13. Gao, P., Zhang, H., Dinavahi, R., Li, F., Xiang, Y., Raman, V., Bhujwalla, Z.M., Felsher, D.W., Cheng, L., Pevsner, J., Lee, L.A., Semenza, G.L. and Dang, C.V. (2007). HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell, 12, 230-238 https://doi.org/10.1016/j.ccr.2007.08.004
  14. Grimm, C., Wenzel, A., Groszer, M., Mayser, H., Seeliger, M., Samardzija, M., Bauer, C., Gassmann, M. and Reme, C.E. (2002). HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nat Med., 8, 718-724 https://doi.org/10.1038/nm723
  15. Ginouves, A., Ilc, K., Macías, N., Pouyssegur, J. and Berra, E. (2008). PHDs overactivation during chronic hypoxia 'desensitizes' HIF alpha and protects cells from necrosis. Proc. Natl. Acad. Sci. USA, 105, 4745-4750
  16. Hewitson, K.S., McNeill, L.A., Riordan, M.V., Tian, Y.M., Bullock, A.N., Welford, R.W., Elkins, J.M., Oldham, N.J., Bhattacharya, S., Gleadle, J.M., Ratcliffe, P.J., Pugh, C.W. and Schofield, C.J. (2002). Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J. Biol. Chem., 277, 26351-26355 https://doi.org/10.1074/jbc.C200273200
  17. Hewitson, K.S., Lienard, B.M., McDonough, M.A., Clifton, I.J., Butler, D., Soares, A.S., Oldham, N.J., McNeill, L.A. and Schofield, C.J. (2007). Structural and mechanistic studies on the inhibition of the hypoxia-inducible transcription factor hydroxylases by tricarboxylic acid cycle intermediates. J. Biol. Chem., 282, 3293-3301 https://doi.org/10.1074/jbc.M608337200
  18. Hirsila, M., Koivunen, P., Gunzler, V., Kivirikko, K.I. and Myllyharju, J. (2003). Characterization of the human prolyl 4- hydroxylases that modify the hypoxia-inducible factor. J. Biol. Chem., 278, 30772-30780 https://doi.org/10.1074/jbc.M304982200
  19. Hirsilä, M., Koivunen, P., Xu, L., Seeley, T., Kivirikko, K.I. and Myllyharju, J. (2005). Effect of desferrioxamine and metals on the hydroxylases in the oxygen sensing pathway. FASEB J., 19, 1308-1310 https://doi.org/10.1096/fj.04-3399fje
  20. Holmquist-Mengelbier, L., Fredlund, E., Lofstedt, T., Noguera, R., Navarro, S., Nilsson, H., Pietras, A., Vallon-Christersson, J., Borg, A., Gradin, K., Poellinger, L. and Pahlman, S. (2006). Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell, 10, 413-423 https://doi.org/10.1016/j.ccr.2006.08.026
  21. Isaacs. J.S., Jung, Y.J., Mole, D.R., Lee, S., Torres-Cabala, C., Chung, Y.L., Merino, M., Trepel, J., Zbar, B., Toro, J., Ratcliffe, P.J., Linehan, W.M. and Neckers, L. (2005). HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell, 8, 143-153 https://doi.org/10.1016/j.ccr.2005.06.017
  22. Jewell, U.R., Kvietikova, I., Scheid, A., Bauer, C., Wenger, R.H. and Gassmann, M. (2001). Induction of HIF-1alpha in response to hypoxia is instantaneous. FASEB J., 15, 1312-1314 https://doi.org/10.1096/fj.00-0732fje
  23. Kasuno, K., Takabuchi, S., Fukuda, K., Kizaka-Kondoh, S., Yodoi, J., Adachi, T., Semenza, G.L. and Hirota, K. (2004). Nitric oxide induces hypoxia-inducible factor 1 activation that is dependent on MAPK and phosphatidylinositol 3- kinase signaling. J. Biol. Chem., 279, 2550-2558 https://doi.org/10.1074/jbc.M308197200
  24. Koike, T., Kimura, N., Miyazaki, K., Yabuta, T., Kumamoto, K., Takenoshita, S., Chen, J., Kobayashi, M., Hosokawa, M., Taniguchi, A., Kojima, T., Ishida, N., Kawakita, M., Yamamoto, H., Takematsu, H., Suzuki, A., Kozutsumi, Y. and Kannagi, R. (2004). Hypoxia induces adhesion molecules on cancer cells: A missing link between Warburg effect and induction of selectin-ligand carbohydrates. Proc. Natl. Acad. Sci. USA, 101, 8132-8137
  25. Klose, R.J., Kallin, E.M. and Zhang, Y. (2006). JmjC-domaincontaining proteins and histone demethylation. Nat. Rev. Genet., 7, 715-727 https://doi.org/10.1038/nrg1945
  26. Koivunen, P., Hirsila, M., Gunzler, V., Kivirikko, K.I. and Myllyharju, J. (2004). Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases. J. Biol. Chem., 279, 9899-9904 https://doi.org/10.1074/jbc.M312254200
  27. Koivunen, P., Hirsilä, M., Remes, A.M., Hassinen, I.E, Kivirikko, K.I. and Myllyharju, J. (2007). Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J. Biol. Chem., 282, 4524-4532 https://doi.org/10.1074/jbc.M610415200
  28. Lando, D., Peet, D.J., Gorman, J.J., Whelan, D.A., Whitelaw, M.L. and Bruick, R.K. (2002). FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev., 16, 1466-1471 https://doi.org/10.1101/gad.991402
  29. Li, F., Sonveaux, P., Rabbani, Z.N., Liu, S., Yan, B., Huang, Q., Vujaskovic, Z., Dewhirst, M.W. and Li, C.Y. (2007). Regulation of HIF-1alpha stability through S-nitrosylation. Mol. Cell, 26, 63-74 https://doi.org/10.1016/j.molcel.2007.02.024
  30. Lee, C., Kim, S.J., Jeong, D.G., Lee, S.M. and Ryu, S.E. (2003). Structure of human FIH-1 reveals a unique active site pocket and interaction sites for HIF-1 and von Hippel- Lindau. J. Biol. Chem., 278, 7558-7563 https://doi.org/10.1074/jbc.M210385200
  31. McNeill, L.A., Hewitson, K.S., Claridge, T.D., Seibel, J.F., Horsfall, L.E. and Schofield, C.J. (2002). Hypoxia-inducible factor asparaginyl hydroxylase (FIH-1) catalyses hydroxylation at the beta-carbon of asparagine-803. Biochem. J., 367, 571-575 https://doi.org/10.1042/BJ20021162
  32. Mahon, P.C., Hirota, K. and Semenza, G.L. (2001). FIH-1: A novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev., 15, 2675-2686 https://doi.org/10.1101/gad.924501
  33. Masson, N, Willam, C., Maxwell, P.H., Pugh, C.W. and Ratcliffe, P.J. (2001). Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J., 20, 5197-5206 https://doi.org/10.1093/emboj/20.18.5197
  34. Nangaku, M., Kojima. I., Tanaka, T., Ohse, T., Kato, H. and Fujita, T. (2006). Novel drugs and the response to hypoxia: HIF stabilizers and prolyl hydroxylase. Recent Patents Cardiovasc Drug Discov., 1, 129-139 https://doi.org/10.2174/157489006777442522
  35. Natarajan, R., Salloum, F.N., Fisher, B.J., Kukreja, R.C. and Fowler, A.A. 3rd. (2006). Hypoxia inducible factor-1 activation by prolyl 4-hydroxylase-2 gene silencing attenuates myocardial ischemia reperfusion injury. Circ. Res., 98, 133-140 https://doi.org/10.1161/01.RES.0000197816.63513.27
  36. Ng, S.S., Kavanagh, K.L., McDonough. M.A., Butler, D., Pilka, E.S., Lienard, B.M., Bray, J.E., Savitsky, P., Gileadi, O., von Delft, F., Rose, N.R., Offer, J., Scheinost, J.C., Borowski, T., Sundstrom, M., Schofield, C.J. and Oppermann, U. (2007). Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity. Nature, 448, 87-91 https://doi.org/10.1038/nature05971
  37. Nytko, K.J., Spielmann, P., Camenisch, G., Wenger, R.H. and Stiehl, D.P. (2007). Regulated function of the prolyl-4- hydroxylase domain (PHD) oxygen sensor proteins. Antioxid Redox Signal, 9, 1329-1338 https://doi.org/10.1089/ars.2007.1683
  38. Park, Y.K., Ahn, D.R., Oh, M., Lee, T., Yang, E.G., Son, M. and Park, H. (2008). The nitric oxide donor, snap, stabilizes trans-active hypoxia-inducible factor-$1{\alpha}$ by inhibiting vhl recruitment and asparagine hydroxylation. Mol. Pharmacol. (in press)
  39. Pollard, P.J., Briere, J.J., Alam, N.A., Barwell, J., Barclay, E., Wortham, N.C., Hunt, T., Jeffery, R., Seedhar, P., Barwell, J., Latif, F., Gleeson, MJ., Hodgson, S.V., Stamp, G.W., Tomlinson, I.P. and Maher, E.R. (2005). Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum. Mol. Genet, 14, 2231-2239 https://doi.org/10.1093/hmg/ddi227
  40. Pouyssegur, J., Dayan, F. and Mazure, N.M. (2006). Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature, 441, 437-443 https://doi.org/10.1038/nature04871
  41. Selak, M.A., Armour, S.M., MacKenzie, E.D., Boulahbel, H., Watson, D.G., Mansfield, K.D., Pan, Y., Simon, M.C., Thompson, C.B. and Gottlieb, E. (2005). Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIFalpha prolyl hydroxylase. Cancer Cell, 7, 77-85 https://doi.org/10.1016/j.ccr.2004.11.022
  42. Semenza, G.L. (2007). Hypoxia-inducible factor 1 (HIF-1) pathway. Sci. STKE, 2007, cm8
  43. Shin, D.H., Kim, J.H., Jung, Y.J., Kim, K.E., Jeong, J.M., Chun, Y.S. and Park, J.W. (2007). Preclinical evaluation of YC-1, a HIF inhibitor, for the prevention of tumor spreading. Cancer Lett., 255, 107-116 https://doi.org/10.1016/j.canlet.2007.03.026
  44. Shin, D.H., Chun, Y.S. and Park, J.W. (2008). Response: Oxygen-dependent effect of bortezomib on FIH-mediated repression of HIF-1. Blood, 111, 5259-5261 https://doi.org/10.1182/blood-2008-03-146233
  45. Tian, H., Hammer, R.E., Matsumoto, A.M., Russell, D.W. and McKnight, S.L. (1998). The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev., 12, 3320-3324 https://doi.org/10.1101/gad.12.21.3320
  46. Vuorela, A., Myllyharju, J., Nissi, R., Pihlajaniemi, T. and Kivirikko, K.I. (1997). Assembly of human prolyl 4-hydroxylase and type III collagen in the yeast pichia pastoris: formation of a stable enzyme tetramer requires coexpression with collagen and assembly of a stable collagen requires coexpression with prolyl 4-hydroxylase. EMBO J., 16, 6702-6712 https://doi.org/10.1093/emboj/16.22.6702
  47. Zheng, X., Linke, S., Dias, J.M., Zheng, X., Gradin, K., Wallis, T.P., Hamilton, B.R., Gustafsson, M., Ruas, J.L., Wilkins, S., Bilton, R.L., Brismar, K., Whitelaw, M.L., Pereira, T., Gorman, J.J., Ericson, J., Peet, D.J., Lendahl, U. and Poellinger, L. (2008). Interaction with factor inhibiting HIF- 1 defines an additional mode of cross-coupling between the Notch and hypoxia signaling pathways. Proc. Natl. Acad. Sci. USA, 105, 3368-3373

Cited by

  1. Proteomic Changes in Chick Brain Proteome Post Treatment with Lathyrus Sativus Neurotoxin, β-N-Oxalyl-L-α,β-Diaminopropionic Acid (L-ODAP): A Better Insight to Transient Neurolathyrism vol.34, pp.3, 2018, https://doi.org/10.5487/TR.2018.34.3.267