• Title/Summary/Keyword: swing phase

Search Result 255, Processing Time 0.023 seconds

The Design of a Low Power and Wide Swing Charge Pump Circuit for Phase Locked Loop (넓은 출력 전압 범위를 갖는 위상동기루프를 위한 저전압 Charge Pump 회로 설계)

  • Pu, Young-Gun;Ko, Dong-Hyun;Kim, Sang-Woo;Park, Joon-Sung;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.8
    • /
    • pp.44-47
    • /
    • 2008
  • In this paper, a new circuit is proposed to minimize the charging and discharging current mismatch in charge pump for UWB PLL application. By adding a common-gate and a common-source amplifier and building the feedback voltage regulator, the high driving charge pump currents are accomplished. The proposed circuit has a wide operation voltage range, which ensures its good performance under the low power supply. The circuit has been implemented in an IBM 0.13um CMOS technology with 1.2V power supply. To evaluate the design effectiveness, some comparisons have been conducted against other circuits in the literature.

The test-retest reliability of gait kinematic data measured using a portable gait analysis system in healthy adults

  • An, Jung-Ae;Byun, Kyung-Seok;Lee, Byounghee
    • Journal of Korean Physical Therapy Science
    • /
    • v.27 no.3
    • /
    • pp.25-34
    • /
    • 2020
  • Background: Gait analysis is an important measurement for health professionals to assess gait patterns related to functional limitations due to neurological or orthopedic conditions. The purpose of this study was to investigate the reliability of the newly developed portable gait analysis system (PGAS). Design: Cross-sectional design. Test-retest study. Methods: The PGAS study was based on a wearable sensor, and measurement of gait kinematic parameters, such as gait velocity, cadence, step length and stride length, and joint angle (hip, knee, and ankle) in stance and swing phases. The results were compared with a motion capture system (MCS). Twenty healthy individuals were applied to the MCS and PGAS simultaneously during gait performance. Results: The test-retest reliability of the PGAS showed good repeatability in gait parameters with mean intra-class correlation coefficients (ICCs) ranging from 0.840 to 0.992, and joint angles in stance and swing phase from 0.907 to 0.988. The acceptable test-retest ICC was observed for the gait parameters (0.809 to 0.961), and joint angles (0.800 to 0.977). Conclusion: The results of this study indicated that the developed PGAS showed good grades of repeatability for gait kinematic data along with acceptable ICCs compared with the results from the MCS. The gait kinematic parameters in healthy subjects can be used as standard values for adopting this PGAS.

Development and Evaluation of the Auditory Feedback Gait Training System Induced Symmetrical Weight-Bearing in Hemiplegic Patients (편마비 환자의 대칭적 체중부하 유도를 위한 청각적 피드백 보행훈련 시스템 개발 및 평가)

  • Kwon, Y.C.;Lee, H.J.;Tae, K.S.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.6 no.2
    • /
    • pp.23-30
    • /
    • 2012
  • In this study, we developed a wireless rehabilitation auditory feedback gait training system for symmetrical weight-bearing in patient with CVA. The device consists of an instantaneous shoe equipped with two load-cell sensors. Auditory feedback can be applied according to the weight-bearing. For gait patterns analysis, cadence, walking velocity, stance/swing phase ratio and gait cycle were examined. The clinical test with six healthy volunteers and two hemiplegic patients was performed applying the auditory feedback system. Both normal subjects and hemiplegic patients were increased strength on weight-bearing in affected limb, walking velocity, and cadence after biofeedback device. Also, the stance time with weight-bearing was increased while the swing time was decreased in gait phase. It can be expected that by using the feedback system, the patient with lower limb disorder will be able to reach a better quality of weight-bearing during gait.

  • PDF

Effects of Performing Dual Task on Temporospatial Gait Variables in Subjects With Subacute Stroke (아급성기 뇌졸중 환자의 이중 과제 수행이 보행의 시·공간적 변수에 미치는 영향)

  • Jang, Young-Min
    • PNF and Movement
    • /
    • v.15 no.3
    • /
    • pp.361-371
    • /
    • 2017
  • Purpose: The purpose of this study was to examine the effects of performing a dual task on gait velocity, temporospatial variables, and symmetry in subjects with subacute stroke. Methods: The study included 14 independent community ambulators with gait velocity of 0.8m/s. The Korean mini-mental state examination, the Berg balance scale, the Trunk impairment scale, and the Fugl-Meyer assessment scale were used to recruit homogeneous subjects. Subjects performed a single task (10m ambulation at a comfortable speed) and a dual task (10m ambulation at a comfortable speed while carrying a water-filled glass). Gait variables were examined with the OptoGait system. Results: The findings of this study were as follows: 1) Gait velocity decreased significantly in the dual-task condition as compared to the single task condition. 2) There were no significant differences between the paretic and non-paretic stances. 3) Paretic swing decreased significantly in the dual-task condition as compared to the single task condition. 4) The non-paretic, double-limb support phase increased significantly in the dual-task condition as compared to the single- task condition. 5) There was no significant difference in temporal symmetry. 6) Non-paretic step length decreased significantly in the dual-task condition as compared to the single-task condition. 7) There was no significant difference in spatial symmetry. Conclusion: Performing dual tasks decreases gait velocity, paretic swing phase, and non-paretic step length, while it increases non-paretic double limb support. In addition, although there is no difference in temporospatial symmetry, there is high inter-subject variability in temporospatial symmetry. Thus, dual tasks should be selected in accordance with the functional level of the hemiplegic patient, and inter-subject variability of the individual should be considered when dual tasks are considered for gait-training of hemiplegic patients.

Effects of Functional Insole on Walking in the Elderly (기능적 인솔이 노인의 보행에 미치는 영향)

  • Seo, Dong-Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.280-286
    • /
    • 2019
  • This study verified the difference in biomechanical variation and the pattern of the lower limb between using or not using functional insoles on the gait of elderly people. Ten females subjects were selected (age: 73.2 years, height: 152.1 cm, body mass: 59.4 kg) for testing their gait with using functional insoles and without using functional insoles. The gait motions were captured with the Qualisys system and the gait parameters were calculated with Visual-3D. As a result, the subjects' stride length and swing time were significantly increased (p<.05). Also, the lower limb's extension moment was significantly increased (p<.05) when using the insole. These differences suggest the functional insole used in the experiment increases the subjects' gait stability. However, to generalize the results of this study, it is necessary to accumulate more quantitative data with more subjects. Further studies to examine gait variables and changes of walking patterns need to be conducted by gathering and utilizing the results of those subjects who have used insoles for a long period of time.

Gait Asymmetry in Children with Down Syndrome (다운증후군 아동들의 보행 비대칭성 연구)

  • Lim, Bee-Oh;Han, Dong-Ki;Seo, Jung-Suk;Eun, Seon-Deok;Kwon, Young-Hoo
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.145-151
    • /
    • 2006
  • A large interindividual variability and some abnormally kinematic patterns at the lower extremity were the main features of the gait in children with Down syndrome. The purposes of this study were to investigate the gait asymmetry and biomechanical difference between dominant leg and non dominant leg in children with Down syndrome. Seven boys with Down Syndrome(age: $120{\pm}0.9yrs$, weight $34.4{\pm}8.4kg$, leg length: $68.7{\pm}5.0cm$) participated in this study. A 10.0 m ${\times}$ 1.3 m walkway with a firm dark surface was built and used for data collection. Three-dimensional motion analyses were performed to obtain the joint angles and range of motions. The vertical ground reaction forces(%BW) and impulses($%BW{\cdot}s$) were measured by two force plates embedded in the walkway. Asymmetry indices between the legs were computed for all variables. After decision the dominant leg and the non dominant leg with max hip abduction angle, paired samples t-test was employed for selected kinematic and ground reaction force variables to analyze the differences between the dominant leg and the non dominant leg. The max hip abduction angle during the swing phase showed most asymmetry, while the knee flexion angle at initial contact showed most symmetry in walking and running. The dominant leg showed more excessive abduction of hip in the swing phase and more flat-footed contact than the non dominant leg. Vertical peak force in running showed more larger than those of in walking, however, vertical impulse showed more small than walking due to decrease of support time. In conclusion, the foot of dominant leg contact more carefully than those of non dominant leg. And also, there are no significant difference between the dominant leg and the non dominant leg in kinematic variables and ground reaction force due to large interindividual variability.

The Effects Where the Stroke Shoes Which Use Functional Electric Stimulation Goes Mad to Walking of the Hemiplegia (기능적 전기자극 치료기를 이용한 중풍구두가 편마비 환자의 보행에 미치는 영향)

  • Kim, Jeong-Seon;Park, Ji-Whan
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.13 no.1
    • /
    • pp.36-43
    • /
    • 2007
  • Purpose: An objective analysis and observations were to be done on hemiplegia patients that are wearing a walking support device, Stroke shoes. Their improvements in walking pace, the reduction of distance between the two knee joint, the increase of curve angle of the knee joint and their steps and the reduction of ankle joint upon swing phase were analyzed using a 20 walking analyzer. Methods: An examination was carried out to see the patients' communication skill and independent walking and then let them walk with the Stroke shoes on to get results before and after wearing it. Simi Reality Motion Systems GmbH (Germany, 2007) was used to analyze the results regarding knee joint and ankle joint angle changes of sagitta plane and coronal plane, stepping distances, distances between the knees and walking pace. Results: 1. The articulation angle of ankle joint during swing phase decreased and knee joint has shown a statistically significant increase in such value(p<0.05). 2. Only knee joint showed a significant increase in articulation angle during heel strike(p<0.05). 3. Knee joint showed a significant increase in articulation angle during toe off(p<0.05). 4. The distance between the two knees as well as their foot steps significantly decreased compared with when Stroke shoes were not worn(p<0.05). 5. Stroke shoes with FES have shown positive effects on the patients in improving their walking styles overall. (p<0.05). Conclusion: There was an improvement in rotation walking pattern by a reduction in the distance between the knees after wearing Stroke shoes with FES. Plantar flexion reduced that occurred in ankle joint during walking and flexion angle increased in knee joint, both of which improved foot drop which was a major problem in hemiplegia patients. Also it is believed that the device will have some positive influences on knee joint stiffening paralysis to aid in improving inefficient walking phases.

  • PDF

Change of lower limb muscle activation according to the use of arm sling in normal subjects (정상인의 팔걸이 사용에 따른 보행 시 하지 근 활성도의 변화)

  • Oh, Gku Bin;Son, Ga Eul;Kim, Seo Yeon;Kim, Hae Deun;Back, Seung Min;Song, Hyen Su;Yun, Sang Hyeok;Cho, Ki Hun
    • Journal of Korean Physical Therapy Science
    • /
    • v.27 no.3
    • /
    • pp.67-74
    • /
    • 2020
  • Background: The purpose of this study was to investigate the change of lower limb muscle activation according to the use of arm sling in normal subjects. Design: Cross-sectional Study Methods: Seven healthy subjects (6 males and 1 female, 25.42 years, 173.57 cm, 71.71 kg) were recruited on a voluntary basis. To measure the lower limb muscle activation during walking with and without arm sling, we used a wireless surface electromyography (sEMG) (FreeEMG1000, BTS Bioengineering, Milano, Italy). Six wireless sEMG electrodes were attached to the following three major muscle groups of the both side lower limb: rectus femoris, biceps femoris, medial gastrocnemius. All subjects wore arm sling on their right side during measurement. Results: In the stance phase, there was a significant increase in right side rectus femoris muscle activation in walking without arm sling compared to the walking with arm sling (p<.05). Additionally, In the stance phase, there was a significant increase in left side tibialis anterior muscle activation in walking without arm sling compared to the walking with arm sling (p<.05). Conclusion: The results of this study suggest that there is a significant association between the arm swing restriction and lower limb muscle activation. Therefore, it seems that it can be applied as basic data for gait training with an arm slings.

Differences in Spatiotemporal Gait Parameters and Lower Extremity Function and Pain in Accordance with Foot Morphological Characteristics (발의 형태학적 특성에 따른 시공간 보행 변인과 하지의 기능 및 통증 차이)

  • Jeon, Hyung Gyu;Lee, Inje;Lee, Sae Yong;Ha, Sunghe
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.2
    • /
    • pp.95-103
    • /
    • 2021
  • Objective: The aim of this study was to investigate the differences in spatiotemporal gait performance, function, and pain of lower-extremity according to foot morphological characteristics. Method: This case-control study recruited 42 adults and they were classified into 3 groups according to foot morphology using navicular-drop test: pronated (≥ 10 mm), normal (5~9 mm), and supinated (≤ 4 mm) feet. Spatiotemporal gait analysis and questionnaires including Foot and Ankle Ability Measure activities of daily living / Sports, Western Ontario and McMasters Universities Osteoarthritis Index, Lower Extremity Functional Scale, International Physical Activity Questionnaire, and Tegner activity score were conducted. One-way analysis of variance was used for statistical analysis. Results: The pronated feet group showed longer loading response and double limb support in both feet and increased pre-swing phase in non-dominant feet. The supinated feet group demonstrated a longer swing phase in non-dominant feet and single limb support in dominant feet. However, there was no significant group difference in function and pain of knee joint and lower-extremity between groups. Conclusion: Our results indicated that abnormal spatiotemporal gait performance according to foot morphology. Although there was no difference in lower extremity dysfunction and pain according to the difference in foot morphology, they have the possibility of symptom occurs as a result of continuous participation in activities of daily living and sports. Therefore, individuals with pronated or supinated foot should be supplemented by utilizing an orthosis or training to restore normal gait performance.

The reliability test of a smart insole for gait analysis in stroke patients

  • Seo, Tae-Won;Lee, Jun-Young;Lee, Byoung-Hee
    • Journal of Korean Physical Therapy Science
    • /
    • v.29 no.1
    • /
    • pp.30-40
    • /
    • 2022
  • Background: This study analyzed the reliability of smart guides for gait analysis in patients with stroke. Design: Cross-sectional study. Methods: The participants of the study were 30 patients with stroke who could walk more than 10 m and had an MMSE-K test score of ≥24. Prior to the experiment, the subjects or their guardians entered their demographic characteristics including gender, age, height, weight into the prepared computer. The experiment was conducted in a quiet, comfortable, and independent location, and the patient was reminded of the equipment description, precautions, and safety rules for walking. A smart insole was inserted into the shoes of the patients and the shoes were put on before the patients walked three times on the 5-m gait analysis system mat installed in the laboratory. Results: The reliability of the equipment was compared with that of the gait analysis system, and the results of this study are as follows: among the gait analysis items, velocity had an ICC=0.982, the cadence had an ICC=0.905, the swing phase on the side of the gait cycle had an ICC=0.893, the swing phase on the side of the gait had an ICC=0.839, that on the non-affected side had an ICC=0.939, single support on the affected side had an ICC=0.812, and support on the non-affected side had an ICC=0.767. Conclusion: The results of this study indicate no statistical difference between the smart insole and the gait analysis system. Therefore, it is believed that real-time gait analysis through smart insole measurement could help patients in rehabilitation.