DOI QR코드

DOI QR Code

Change of lower limb muscle activation according to the use of arm sling in normal subjects

정상인의 팔걸이 사용에 따른 보행 시 하지 근 활성도의 변화

  • Oh, Gku Bin (Dept. of Physical Therapy, Korea National University of Transportation) ;
  • Son, Ga Eul (Dept. of Physical Therapy, Korea National University of Transportation) ;
  • Kim, Seo Yeon (Dept. of Physical Therapy, Korea National University of Transportation) ;
  • Kim, Hae Deun (Dept. of Physical Therapy, Korea National University of Transportation) ;
  • Back, Seung Min (Dept. of Physical Therapy, Korea National University of Transportation) ;
  • Song, Hyen Su (Dept. of Physical Therapy, Korea National University of Transportation) ;
  • Yun, Sang Hyeok (Dept. of Physical Therapy, Korea National University of Transportation) ;
  • Cho, Ki Hun (Dept. of Physical Therapy, Korea National University of Transportation)
  • 오규빈 (한국교통대학교 물리치료학과) ;
  • 손가을 (한국교통대학교 물리치료학과) ;
  • 김서연 (한국교통대학교 물리치료학과) ;
  • 김해든 (한국교통대학교 물리치료학과) ;
  • 백승민 (한국교통대학교 물리치료학과) ;
  • 송현수 (한국교통대학교 물리치료학과) ;
  • 윤상혁 (한국교통대학교 물리치료학과) ;
  • 조기훈 (한국교통대학교 물리치료학과)
  • Received : 2020.10.27
  • Accepted : 2020.12.10
  • Published : 2020.12.31

Abstract

Background: The purpose of this study was to investigate the change of lower limb muscle activation according to the use of arm sling in normal subjects. Design: Cross-sectional Study Methods: Seven healthy subjects (6 males and 1 female, 25.42 years, 173.57 cm, 71.71 kg) were recruited on a voluntary basis. To measure the lower limb muscle activation during walking with and without arm sling, we used a wireless surface electromyography (sEMG) (FreeEMG1000, BTS Bioengineering, Milano, Italy). Six wireless sEMG electrodes were attached to the following three major muscle groups of the both side lower limb: rectus femoris, biceps femoris, medial gastrocnemius. All subjects wore arm sling on their right side during measurement. Results: In the stance phase, there was a significant increase in right side rectus femoris muscle activation in walking without arm sling compared to the walking with arm sling (p<.05). Additionally, In the stance phase, there was a significant increase in left side tibialis anterior muscle activation in walking without arm sling compared to the walking with arm sling (p<.05). Conclusion: The results of this study suggest that there is a significant association between the arm swing restriction and lower limb muscle activation. Therefore, it seems that it can be applied as basic data for gait training with an arm slings.

Keywords

References

  1. 김덕용, 박창일, 박은숙, 등. 보행에서의 상지 움직임의 역할. 대한재활의학회지 2001;25(6):1031-40.
  2. 김동훈, 장영, 김경훈. 선 자세 몸통 안정화 운동이 길리안 바레 환자의 균형과 보행에 미치는 효과: 증례보고. 대한물리치료과학회지 2020;27(2):88-95. https://doi.org/10.26862/jkpts.2020.09.27.2.88
  3. 배성수, 구봉오, 최재청, 등. 임상운동학. 영문출판사; 1993. p.500-50
  4. 송근호, 이현옥. 팔걸이가 편마비환자의 보행에 미치는 영향. 대한물리치료학회지 2006;18(4):27-40.
  5. 윤성익, 오덕원, 오경아, 등. 팔걸이가 뇌졸중 환자의 보행속도 및 에너지 소모량에 미치는 영향. 대한물리치료과학회지 2008;15(1):39-45.
  6. 이도경, 한승진, 윤성익, 등. 팔걸이가 편마비 환자의 기립자세 균형에 미치는 영향. Ann Rehabil Med 2004;28(6):532-6.
  7. 이수현, 김동훈, 이규리. 트레드밀 운동 시 속도와 부하가 하지 근활성도와 근력에 미치는 영향. 대한물리치료과학회지 2019;26(3):37-43. https://doi.org/10.26862/jkpts.2019.12.26.3.37
  8. 이옥경, 안덕현. 팔걸이 형태에 따른 정상인의 보행변수 변화. 한국콘텐츠학회논문지 2010;10(5):267-76. https://doi.org/10.5392/JKCA.2010.10.5.267
  9. 이우중, 이선아, 김아람, 등. 다리 등척성 근력 및 균형 능력에 대한 발목관절 운동과 넓적다리 운동의 비교. 대한물리의학회지 2019;14(4):153-62. https://doi.org/10.13066/kspm.2019.14.4.153
  10. 정서현, 조상우, 정상훈, 등. 필라테스 동작시 폼롤러의 적용과 움직임에 따른 몸통근과 하지근의 근전도 반응에 미치는 영향. 한국응용과학기술학회지 (구. 오일 및 응용과학 학회지) 2018;35:905-13. https://doi.org/10.12925/jkocs.2018.35.3.905
  11. 정화수, 조화영, 최수희, 등. 팔 흔들기가 정상인의 보행에 미치는 영향. J Digit Convergence 2014;12(11):451-9. https://doi.org/10.14400/JDC.2014.12.11.451
  12. 한경희. 김경덕. 장기언, 팔걸이의 4가지 유형에 따른 견관절 아탈구 교정효과의 방사선학적 비교. 대한재활의학회지 1994;18(1):118-24.
  13. Al-Obaidi S, Wall JC, Al-Yaqoub A, et al. Basic gait parameters: a comparison of reference data for normal subjects 20 to 29 years of age from Kuwait and Scandinavia. J Rehabil Res Dev 2003;40(4):361-6. https://doi.org/10.1682/JRRD.2003.07.0361
  14. Andriacchi TP, Andersson GB, Fermier RW, et al. A study of lower-limb mechanics during stair-climbing. J Bone Joint Surg Am 1980;62(5):749-57. https://doi.org/10.2106/00004623-198062050-00008
  15. Aniansson A, Hedberg M, Henning GB, et al. Muscle morphology, enzymatic activity, and muscle strength in elderly men: a follow-up study. Muscle Nerve 1986;9(7):585-91. https://doi.org/10.1002/mus.880090702
  16. Basmajian JV. Their function revealed by Electromyography. Muscle Alive 1985:212.
  17. Bohannon RW. Gait performance of hemiparetic stroke patients: selected variables. Arch Phys Med Rehabil 1987;68(11):777-81.
  18. de Almeida FM, Tomiosso TC, Nakagaki WR, et al. Effects of passive stretching on the biochemical and biomechanical properties of calcaneal tendon of rats. Connect Tissue Res 2009;50(5):279-84. https://doi.org/10.3109/03008200802697435
  19. Eke-Okoro ST, Gregoric M, Larsson LE. Alterations in gait resulting from deliberate changes of arm-swing amplitude and phase. Clin Biomech (Bristol, Avon) 1997;12(7-8):516-21. https://doi.org/10.1016/S0268-0033(97)00050-8
  20. Ferris DP, Huang HJ, Kao PC. Moving the arms to activate the legs. Exerc Sport Sci Rev 2006;34(3):113-20. https://doi.org/10.1249/00003677-200607000-00005
  21. Ford MP, Wagenaar RC, Newell KM. Arm constraint and walking in healthy adults. Gait Posture 2007;26(1):135-41. https://doi.org/10.1016/j.gaitpost.2006.08.008
  22. Frigo C, Crenna P. Multichannel SEMG in clinical gait analysis: a review and state-of-the-art. Clin Biomech (Bristol, Avon) 2009;24(3):236-45. https://doi.org/10.1016/j.clinbiomech.2008.07.012
  23. Grillner S, Zangger P. How detailed is the central pattern generation for locomotion? Brain Res 1975;88(2):367-71. https://doi.org/10.1016/0006-8993(75)90401-1
  24. Gyory AN, Chao EY, Stauffer RN. Functional evaluation of normal and pathologic knees during gait. Arch Phys Med Rehabil 1976;57(12):571-7.
  25. Harris GF, Wertsch JJ. Procedures for gait analysis. Arch Phys Med Rehabil. 1994;75(2):216-25. https://doi.org/10.1016/0003-9993(94)90399-9
  26. Kim G, Yoon NM. A study on kinetic gait analysis of the normal adult. J Korean Phys Ther 2009;21(2):87-95.
  27. Kim JS, Kwon OH. The effect of arm swing on gait in post-stroke hemiparesis. J Korean Soc Phys Med 2012;7(1):95-101. https://doi.org/10.13066/kspm.2012.7.1.095
  28. Lee J, Kwon HM. Comparison of algorithms estimating linear regression line from surface EMG signals. Trans Korean Institute Electrical Eng 2008;57(3):527-35.
  29. Perry J, Davids JR. Gait analysis: normal and pathological function. J Pediatr Orthop 1992;12(6):815. https://doi.org/10.1097/01241398-199211000-00023
  30. Ralston HJ. Effects of immobilization of various body segments on the energy cost of human locomotion. Proc 2nd Int Cong on Ergonomics 1965:53-60.
  31. Sim YB. The Effect of Arm Sling on Balance and Gait Speed in Patients with Hemiplegia[Dissertation of Master's Degree] Gachon Univ.; 2011.
  32. Snels IA, Beckerman H, Lankhorst GJ, et al. Treatment of hemiplegic shoulder pain in the Netherlands: results of a national survey. Clin Rehabil 2000;14(1):20-7. https://doi.org/10.1191/026921500668239146
  33. Soderberg GL, Knutson LM. A guide for use and interpretation of kinesiologic electromyographic data. Phys Ther 2000;80(5):485-98. https://doi.org/10.1093/ptj/80.5.485
  34. Umberger BR. Effects of suppressing arm swing on kinematics, kinetics, and energetics of human walking. J Biomech 2008;41(11):2575-80. https://doi.org/10.1016/j.jbiomech.2008.05.024
  35. Wilson MP. Development of SATRA slip test and tread pattern design guidelines. In Slips, stumbles, and falls: pedestrian footwear and surfaces. ASTM International 1990:113-23.
  36. Yavuzer G, Ergin S. Effect of an arm sling on gait pattern in patients with hemiplegia. Arch Phys Med Rehabil 2002;83(7):960-3. https://doi.org/10.1053/apmr.2002.33098
  37. Yoon NM, Yoon HJ, Park, JS, et al. The comparative study on age-associated gait analysis in normal Korean. J Korean Phys Ther 2010;22(2):15-24.