• Title/Summary/Keyword: sweet potato leaves

Search Result 41, Processing Time 0.023 seconds

Ensiled and Dry Cassava Leaves, and Sweet Potato Vines as a Protein Source in Diets for Growing Vietnamese Large White×Mong Cai Pigs

  • Ly, Nguyen T.H.;Ngoan, Le.D.;Verstegen, Martin W.A.;Hendriks, Wouter H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.9
    • /
    • pp.1205-1212
    • /
    • 2010
  • The aim of the present study was to evaluate the effects of replacing 70% of the protein from fish meal by protein from ensiled or dry cassava leaves and sweet potato vines on the performance and carcass characters of growing F1 (Large White${\times}$Mong Cai) pigs in Central Vietnam. Twenty-five crossbred pigs (Large White${\times}$Mong Cai) with an initial weight of 19.7 kg (SD = 0.84) were allocated randomly to five treatment groups with 5 animals per group (3 males and 2 females). Pigs were kept individually in pens ($2.0{\times}0.8\;m$) and fed one of five diets over 90 days. The control diet was formulated with fish meal (FM) as the protein source while the other four diets were formulated by replacing 70% of fish meal protein by protein from ensiled cassava leaves (ECL), dry cassava leaves (DCL), dry sweet potato vines (DSPV) or ensiled sweet potato vines (ESPV). Animals were fed their diets at 4% of BW. Results showed that final BW, ADG, DMI and feed conversion ratio (FCR) among the experimental treatments were not significantly different (p>0.05). ECL or DCL and ESPV reduced feed cost per unit gain by 8-17.5% compared to the fish meal diet. There were no significant differences in carcass characters among the diets (p>0.05). Lean meat percentages and protein deposition ranged 41.5-45.8% and 40.2-52.9 g/d, respectively. Using ensiled or dry cassava leaves and sweet potato vine can replace at least 70% of the protein from fish meal (or 35% of total diet CP) without significant effects on performance and carcass traits of growing (20-65 kg) pigs. Including cassava leaves and sweet potato vines could improve feed cost and therefore has economic benefits.

Molecular Detection and Analysis of Sweet potato feathery motile vims from Root and Leaf Tissues of Cultivated Sweet Potato Plants

  • Ryu, Ki-Hyun;Park, Sun-Hee
    • The Plant Pathology Journal
    • /
    • v.18 no.1
    • /
    • pp.12-17
    • /
    • 2002
  • For the molecular detection of Sweet potaio feathery mottle virus (SPFMV) from diseased sweet potato plants, reverse transcription and polymerase chain reaction (RT-PCR) was performed with the use of a set of virus-specific primers to amplify an 816 bp product. The viral coat protein gene was selected for the design of the primers. No PCR product was amplified when Turnip mosaic virus, Potato vims Y or Cucumber mosaic virus were used as template in RT-PCR with the SPFMV-specific primers. The lowest concentration of template viral RNA required for detection was 10 fg. The vim was rapidly detected from total nucleic acids of leaves and roots from the virus-infected sweet potato plants as well as from the purified viral RNA by the RT-PCR. Twenty-four sweet potato samples were selected and analyzed by RT-PCR and restriction fragment length polymorphism (RFLP). RFLP analysis of the PCR products showed three restriction patterns, which resulted in some point mutations suggesting the existence of quasi-species for the vims in the infected sweet potato plants.

Allelopathy and Quantification of Causative Allelochemicals in Sweet Potato

  • Chon, Sang-Uk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.5
    • /
    • pp.402-406
    • /
    • 2003
  • Greenhouse and laboratory studies were conducted to determine the allelopathic potentials of extracts or residues from sweet potato (Ipomoea batatas L. (Lam). The extracts applied on filter paper in a Petri dish bioassay significantly inhibited root growth of alfalfa. Aqueous leachates at 40g dry tissue $\textrm{L}^{-1}$ (g $\textrm{L}^{-1}$) from leaves showed the highest inhibition against alfalfa, and followed by stems and roots. Alfalfa root growth was significantly inhibited by methanol extracts of the same plants as the concentration increased. The effect of residue incorporation into soil on seedling growth of com, soybean, barnyard grass and eclipta was examined in the greenhouse, and results showed that the leaf residues at 200g $\textrm{kg}^{-1}$ by plant parts inhibited shoot dry and root dry weights of test plants by 60-80%. By means of HPLC, causative allelopathic substances present in plant parts of sweet potato "Sinyulmi" were identified as coumarin, trans-cinnamic acid, o-coumaric acid, p-coumaric acid, and chlorogenic acid. Total content of these compounds for leaves extracts were detected as the greatest amount in EtOAc fraction, especially trans-cinnamic acid was the greatest component. These results suggest that sweet potato plants have herbicidal potentials, and that their activities exhibit differently depending on plant parts.ant parts.

Antioxidant Characteristics of Sweet Potato (Ipomoea batatas (L.) Lam.) according to Different Plant Parts and Drying Methods (건조방법에 따른 고구마 식물체 부위별 항산화특성)

  • Eom-ji Hwang;Tae Hwa Kim;Won Park;Kyo Hwui Lee;Sang-Sik Nam;You-jin Park;Sehee Kim;Hyeong-Un Lee;Mi Nam Chung;Tae Joung Ha;Koan Sik Woo
    • The Korean Journal of Food And Nutrition
    • /
    • v.36 no.4
    • /
    • pp.327-333
    • /
    • 2023
  • This study investigated the antioxidant characteristics of sweet potato according to different plant parts and drying methods. The sweet potato plant parts were divided into root tubers, stems, stalks, leaves, and tips, and the drying methods were freeze-drying and hot air drying. Total polyphenol and flavonoid contents and radical scavenging activity of the sweet potato plant parts were significantly different depending on the plant parts and drying methods. The total polyphenol content of freeze-dried sweet potato leaves and tips were 52.76 and 46.19 mg chlorogenic acid equivalents/g sample, and the total flavonoid contents were 222.47 and 214.12 mg quercetin equivalents/g sample, respectively, and decreased with hot air drying. DPPH radical scavenging activity was higher in freeze-drying than hot air drying and was significantly different depending on the plant parts. The ABTS radical scavenging activity of freeze-dried sweet potato leaves and tips were 43.48 and 44.68 mg Trolox equivalents/g sample, respectively, and decreased with hot air drying. Therefore, additional studies on the functionality of using by-products from sweet potato cultivation are needed.

Antioxidant Activities of Colored Sweet Potato Cultivars by Plant Parts

  • Boo, Hee-Ock;Chon, Sang-Uk;Kim, Sun-Min;Pyo, Byung-Sik
    • Food Science and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.177-180
    • /
    • 2005
  • Antioxidant activity of crude extracts from colored sweet potato cultivars by plant parts such as root, stem and leaf was evaluated. The highest TBARS values were obtained from root samples of sweet patato, and followed by stems and leaves, indicating that leaf sample showed the strongest antioxidant activity. Sweet potato cultivars with yellow flesh and leaf part exhibited strong antioxidant activities. Antioxidant activities of leaf and stem extracts were maintained for 21 days and were a little lower than that of BHT. The DPPH radical scavenging activity was the highest in "Sinhwangmi" leaf, and followed by "Jami" root. Chlorogenic acid was detected as the most abundant antioxidant substance among all fractions. These results suggest that the antioxidant activity of sweet potato differs depending on plant part and cultivar.

Construction of an Agroinfectious Clone of a Korean Isolate of Sweet Potato Symptomless Virus 1 and Comparison of Its Infectivity According to Agrobacterium tumefaciens Strains in Nicotiana benthamiana

  • Phuong T. Ho;Hee-Seong Byun;Thuy T. B. Vo;Aamir Lal;Sukchan Lee;Eui-Joon Kil
    • The Plant Pathology Journal
    • /
    • v.39 no.3
    • /
    • pp.255-264
    • /
    • 2023
  • Sweet potato symptomless virus 1 (SPSMV-1) is a single-stranded circular DNA virus, belonging to the genus Mastrevirus (family Geminiviridae) that was first identified on sweet potato plants in South Korea in 2012. Although SPSMV-1 does not induce distinct symptoms in sweet potato plants, its co-infection with different sweet potato viruses is highly prevalent, and thus threatens sweet potato production in South Korea. In this study, the complete genome sequence of a Korean isolate of SPSMV-1 was obtained by Sanger sequencing of polymerase chain reaction (PCR) amplicons from sweet potato plants collected in the field (Suwon). An infectious clone of SPSMV-1 (1.1-mer) was constructed, cloned into the plant expression vector pCAMBIA1303, and agro-inoculated into Nicotiana benthamiana using three Agrobacterium tumefaciens strains (GV3101, LBA4404, and EHA105). Although no visual differences were observed between the mock and infected groups, SPSMV-1 accumulation was detected in the roots, stems, and newly produced leaves through PCR. The A. tumefaciens strain LBA4404 was the most effective at transferring the SPSMV-1 genome to N. benthamiana. We confirmed the viral replication in N. benthamiana samples through strand-specific amplification using virion-sense- and complementary-sense-specific primer sets.

Ensiling of Sweet Potato Leaves (Ipomoea batatas (L.) Lam) and the Nutritive Value of Sweet Potato Leaf Silage for Growing Pigs

  • An, Le Van;Lindberg, Jan Erik
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.4
    • /
    • pp.497-503
    • /
    • 2004
  • The effect of adding carbohydrate-rich feedstuffs to sweet potato leaves (SPL) on silage quality was studied using a total of 180 laboratory silos. Silage quality was assessed by changes of pH, dry matter (DM), crude protein (CP) and ammonia nitrogen ($NH_{3}$-N). Pre-wilted SPL was mixed with cassava root meal (CRM), sweet potato root meal (SPM) or sugar cane molasses (Mo) at levels of 0, 30, 60 and 90 g $kg^{-1}$ (air-dry weight of additives to pre-wilted weight of SPL). Samples for assessing silage quality were collected after mixing the SPL with the additive and thereafter at 7, 14, 28 and 56 days of ensiling. There was a marked decrease in pH after 7 days and the pH remained low and stable until day 56. Addition of 60 and 90 g $kg^{-1}$ resulted in a lower pH (p<0.05) than the other treatments. The DM content of the silage increased (p<0.05) with increasing levels of additive, while there were no differences in DM with time of ensiling. The CP content of the silage decreased (p<0.05) with increasing levels of additive. The CP content did not change up to 28 days, but was lower (p<0.05) after 56 days in all treatments. The $NH_{3}$-N levels were increasing (p<0.05) with time of ensiling, and were lower (p<0.05) with additive levels of 60 g $kg^{-1}$ or higher. Also, the additive source affected the $NH_{3}$-N values, with the lowest values found for Mo. Castrated male pigs (Large White$\times$Mongcai) were used in 4$\times$4 Latin square design to study the total tract digestibility and nitrogen (N) utilisation of diets with inclusion of ensiled SPL. The diets were based on cassava root meal with inclusion of protein from either fish meal (C) or SPL ensiled with CRM (D1), SPL ensiled with SPM (D2) and SPL ensiled with Mo (D3). The digestibility of DM, organic matter (OM) and CP were higher (p<0.05), and the digestibility of crude fibre (CF) was lower (p<0.05), in diet C than in diets D1, D2 and D3. However, there were no differences (p>0.05) in digestibility of dietary components between diets D1, D2 and D3. Also, the excretion of N in faeces was higher (p<0.05) and the N retention was lower (p<0.05) in diets D1, D2 and D3 than in diet C. It can be concluded from the present experiments, that a good quality silage can be produced from pre-wilted SPL by addition of 60 g $kg^{-1}$ of either CRM, SPM or Mo. Diets with inclusion of 450 g ensiled SPL $kg^{-1}$ DM showed a high digestibility of dietary components and thus ensiled SPL should be considered as a potential feed resource for growing pigs.

Isolation and Antioxidative Activities of Caffeoylquinic Acid Derivatives and Flavonoid Glycosides from Leaves of Sweet Potato (Ipomoea batatas L.)

  • Kim, Hyoung-Ja;Jin, Chang-Bae;Lee, Yong-Sup
    • Biomolecules & Therapeutics
    • /
    • v.15 no.1
    • /
    • pp.46-51
    • /
    • 2007
  • Bioassay-directed chromatographic fractionation of an ethyl acetate extract from leaves of sweet potato (Ipomoea batatas L.) afforded six quinic acid derivatives: 3,5-epi-dicaffeoylquinic acid (1), 3,5-dicaffeoylquinic acid (2), methyl 3,5-O-dicaffeoylquinate (3), methyl 3,4-dicaffeoylquinate (4), methyl 4,5-dicaffeoylquinic acid (5),4,5-dicaffeoylquinate (6), and two phenolic compounds: caffeic acid (7) and caffeic acid methyl ester (8) together with three flavonoids: quercetin 3-O-${\beta}$-D-glucopyranoside (9), quercetin 3-O-${\beta}$-D-glucopyranoside, isoquercitrin (10) and kaempferol 3-O-${\beta}$-D-glucopyranoside (11). The structures of these compounds were elucidated by the aid of spectroscopic methods. These compounds were assessed for antioxidant activities using three different cell-free bioassay systems. All isolates except 11 showed potent DPPH and superoxide anion radicals scavenging, and lipid peroxidation inhibitory activities. 3,5-epi-DCQA (1) and methyl quinates (3-5) along with flavonoide 9 were isolated for the first time from this plant.

A Leaf-Inhabiting Endophytic Bacterium, Rhodococcus sp. KB6, Enhances Sweet Potato Resistance to Black Rot Disease Caused by Ceratocystis fimbriata

  • Hong, Chi Eun;Jeong, Haeyoung;Jo, Sung Hee;Jeong, Jae Cheol;Kwon, Suk Yoon;An, Donghwan;Park, Jeong Mee
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.488-492
    • /
    • 2016
  • Rhodococcus species have become increasingly important owing to their ability to degrade a wide range of toxic chemicals and produce bioactive compounds. Here, we report isolation of the Rhodococcus sp. KB6, which is a new leaf-inhabiting endophytic bacterium that suppresses black rot disease in sweet potato leaves. We determined the 7.0 Mb draft genome sequence of KB6 and have predicted 19 biosynthetic gene clusters for secondary metabolites, including heterobactins, which are a new class of siderophores. Notably, we showed the first internal colonization of host plants with Rhodococcus sp. KB6 and discuss its potential as a biocontrol agent for sustainable agriculture.

Responses of Transgenic Tobacco Plants Expressing Sweet Potato Peroxidases to Gamma Radiation (감마선에 대한 고구마 Peroxidase 형질전환 담배식물체의 반응)

  • 윤병욱;이행순;권석윤;김재성;곽상수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.4
    • /
    • pp.265-269
    • /
    • 1999
  • Transgenic tobacco plants expressing either a sweet potato anionic peroxidase (POD) (swpal) or neutral POD (swpnl) were irradiated by gamma radiation, and the gamma radiation-induced biochemical changes in antioxidant enzymes and plant growth inhibition were investigated at 30 days after treatment. Gamma radiation significantly inhibited the growth of all plants regardless of transgenic or nontransformed plants, showing a dose-dependent inhibition. In high dosage of 50 and 70 Gy, plant heights were severely retarded and new leaves does not emerged. No significant changes in antioxidant enzymes such as POD, superoxide dismutase and catalase were observed in all plants regardless of irradiation dosages ranging from 10 to 50 Gy. These results suggest that sweet potato PODs may be not involved in the protection against the oxidative stress induced by gamma radiation.

  • PDF