• Title/Summary/Keyword: sweep angle

Search Result 59, Processing Time 0.02 seconds

Initial Configuration Layout Design for 95-Seat Regional Turboprop Aircraft

  • Hwang, In Seong;Chung, Jindeog;Kang, Wanggu;Lee, Hae-Chang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.138-145
    • /
    • 2014
  • The initial configuration for 95-seat passenger regional turboprop aircraft, the so called KC950, was designed to meet the market requirements. This paper prescribes the initial design based upon aircraft design guidelines and compared the competitive aircraft configurations after considering the related FAR 25 regulations. More specifically, results of design describe how to select the fuselage cross-sectional area, how to layout the cabin, and how to determine the overall shape and physical dimension of the fuselage. Sizing of wing and empennage areas is estimated using empirical equations and tail volume coefficients in this design. Some design guidelines to determine wing sweep angle, taper ratio, incidence angle and location are also introduced.

A Study on the Performance of the Wing In Ground Effect by a Vortex Lattice Method (와류 격자법에 의한 지면효과익의 성능 연구)

  • Jeong, Gwang-Hyo;Jang, Jong-Hui;Jeon, Ho-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.87-96
    • /
    • 1998
  • A numerical simulation was done to investigate the performance of thin wings in close vicinity to ground. The simulation is based on Vortex Lattice Method(VLM) and freely deforming wake elements are taken into account for a sudden acceleration case. The parameters covered in the simulation are angle of attack, aspect ratio, ground clearance, sweep angle and taper ratio. In addition, the effect of the wing endplate on the ground effect is included. The wing sections used for present computations are uncambered, cambered and S-types. The present computational results are compared with other published computational results and experimental data.

  • PDF

Determination of Frequency Independent Critical Concentration of Xathan and Carob Mixed Gels

  • Yoon, Won-Byong;Gunasekaran, Sundaram
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.1069-1071
    • /
    • 2007
  • The frequency independent critical concentration (Cc) of xanthan and carob (X/C) mixed gel was determined based on the Winter-Chambon's theory. X/C mixed (X/C=1:1 ratio) gels were prepared from 0.1 to 1% of concentration. The linear viscoelastic properties, i.e., storage and loss modulus, of X/C mixed gel at $20^{\circ}C$ were measured by frequency sweep tests. The frequency independence of tangent function of phase angle (tan ${\delta}$) of X/C mixed gels was graphically determined from the intersection of the plot of phase angle against concentration at varied frequencies. The intersection (C=0.43%) was considered to be Cc of X/C mixed gel.

The Instrumental Development for Pulling.Reaping Training & Measuring in Judo (유도 당기기.후리기 훈련 및 측정 장비 개발)

  • Kim, Eui-Hwan;Choi, Eun-Soo;Nam, Duck-Hyun;Kim, Sung-Sup;Chung, Jae-Wook;Kim, Tae-Whan
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.213-226
    • /
    • 2008
  • E. H. KIM, E. S. CHOI, D, H. NAM, S. S. KIM, J. W. CHUNG and T. W. KIM, The Instrumenfal Development for Pulling . Reaping Training & Measuring in Judo.Korean Jiurnal of Sport Biomechanics, Vol. 18, No. 1, pp. 213-226, 2008. The purpose of this study was to develop a judo-doll uke(partner : doll-uke) for training and measurement applicable to pulling, pushing and reaping in judo. In Judo the most common techniques consist of the pulling, pushing and sweep which all need to be practiced with a partner. So the research needs to develop a measurement system that can be used to evaluate the forces involved with these techniques. Also the Doll-Uke must be developed so that judokas can train alone. After the manufacture of Doll-Uke the usefulness of it must be evaluated. The height of a Doll-Uke is l70cm and its weight is 50kg. Doll-Uke was developed with a trunk angle of 55 and the lower extremities of an angle of 45. The Doll-Uke can also measure the forces developed during the pulling, pushing and sweep. Due to the ability of the system to measure the forces while preforming Judo techniques feedback can be provided to the Judokas to improve their performance.

Investigation of crossflow features of a slender delta wing

  • Tasci, Mehmet O.;Karasu, Ilyas;Sahin, Besir;Akilli, Huseyin
    • Wind and Structures
    • /
    • v.31 no.3
    • /
    • pp.229-240
    • /
    • 2020
  • In the present work, the main features of primary vortices and the vorticity concentrations downstream of vortex bursting in crossflow plane of a delta wing with a sweep angle of Λ=70° were investigated under the variation of the sideslip angles, β. For the pre-review of flow structures, dye visualization was conducted. In connection with a qualitative observation, a quantitative flow analysis was performed by employing Particle Image Velocimetry (PIV). The sideslip angles, β were varied with four different angles, such as 0°, 4°, 12°, and 20° while angles of attack, α were altered between 25° and 35°. This study mainly focused on the instantaneous flow features sequentially located at different crossflow planes such as x/C=0.6, 0.8 and 1.0. As a summary, time-averaged and instantaneous non-uniformity of turbulent flow structures are altered considerably resulting in non-homogeneous delta wing surface loading as a function of the sideslip angle. The vortex bursting location on the windward side of the delta wing advances towards the leading-edge point of the delta wing. The trajectory of the primary vortex on the leeward side slides towards sideways along the span of the delta wing. Besides, the uniformity of the lift coefficient, CL over the delta wing plane was severely affected due to unbalanced distribution of buffet loading over the same plane caused by the variation of the sideslip angle, β. Consequently, dissimilarities of the leading-edge vortices result in deterioration of the mean value of the lift coefficient, CL.

The Study of Advanced Propeller Blade for Next Generation Turboprop Aircraft -Part I. Aerodynamic Design and Analysis (차세대 터보프롭 항공기용 최신 프로펠러 블레이드 연구 -Part I. 공력 설계 및 해석)

  • Choi, Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1017-1024
    • /
    • 2012
  • The aerodynamic design and analysis on advanced propeller with blade sweep was performed for recent turboprop aircraft. HS1 airfoil series are selected as a advanced propeller blade airfoil. Adkins method is used for aerodynamic design and performance analysis with respect to the design point. Adkins method is based on the vortex-blade element theory which design the propeller to satisfy the condition for minimum energy loss. Propeller geometry is generated by varying chord length and pitch angle at design point of target aircraft. Advanced propeller is designed by apply the modified chord length, the tip sweep which is based on the geometry of conventional propeller. The aerodynamic characteristics of the designed Advanced propeller were verified by CFD(Computational Fluid Dynamic) and evaluated to be properly designed.

The Study on the Aeroelastic Stability of Hingeless Helicopter Rotor in Hover Considering Parametric Angle Changes (파라메타 각 변화를 고려한 힌지없는 헬리콥터 로우터의 공력탄성학적 안정성)

  • 한창헌;김승조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.386-391
    • /
    • 1998
  • The effect of the changes in parameter angles(precone, droop, sweep) on the lead-lag damping was focused on. Experiment was made with hingeless 4-blade rotors and NACA 0012 airfoil. For the measurement of the rotating natural frequencies and lead-lag damping, non-rotating swash plate was oscillated at the regressing lag mode frequency and the data were acquired after the excitation was cut off. Analysis was made using a finite element formulation based on Hamilton's principle. The main blade is assumed as elastic beams. Quasi-steady strip theory is used to obtain aerodynamic forces, and non-circulatory forces are also included.

  • PDF

Assessment of Optimization Methods for Design of Axial-Flow Fan (축류송풍기 설계를 위한 최적설계기법의 평가)

  • Choi, Jae-Ho;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.221-226
    • /
    • 1999
  • Three-dimensional flow analysis and numerical optimization methods are presented for the design of an axial-flow fan. Steady, Incompressible, three-dimensional Reynolds-averaged Wavier-Stokes equations are used as governing equations, and standard k-$\epsilon$ turbulence model is chosen as a turbulence model. Governing equations are discretized using finite volume method. Steepest descent method, conjugate gradient method and BFGS method are compared to determine the searching directions. Golden section method and quadratic fit-sectioning method are tested for one dimensional search. Objective function is defined as a ratio of generation rate of the turbulent kinetic energy to pressure head. Sweep angle distributions are used as design variables.

  • PDF

A Numerical Study on the Effect of Blade Shapes on the Performance of the Propeller-type Submersible Mixers (날개형상이 프로펠러형 수중믹서의 성능에 미치는 영향에 관한 수치적 연구)

  • Choi, Y. S.;Lee, J. H.;Kim, S. I.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.252-256
    • /
    • 1999
  • In this research, the performance predictions of the submersible mixer were investigated. The variation of the performance characteristics by changing the impeller design parameters were discussed through the flow calculation results by using a commercial program, FLUENT. The performance of the submersible mixers is related to the velocity diffusion profiles downstream of the impeller and also the required input motor power to mix the fluid. In this study, the various design parameters such as the number of blade, the hub and tip diameters, the impeller blade profiles and revolution speed of the blades were taken for the fixed values. The blade sweep direction, the chord length distribution along with the radius of the blade and the inlet blade angle were changed to make different testing models. The flow calculation results show the effect of the changed design parameters on the performance of the submersible mixers and also give some helpful information for designing more efficient submersible mixers.

  • PDF

A study on the static stability of the otter board in relation to the angle of attack (영각의 변화에 대한 전개판의 정적 안정성 연구)

  • Park, Chang-Doo;An, Heui-Chun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.3
    • /
    • pp.234-240
    • /
    • 2002
  • The static stability of the otter board in relation to the angle of attack ($\alpha$) was studied analytically and experimentally from the moments of tensions and hydrodynamic force acting on it. Three flat plates of 0.5, 1.0, and 1.5 aspect ratios (λ) and four cambered plates of 5, 10, 15, and 20% camber ratios (CR) with the same aspect ratio (λ=1.5) were tested in a circulating water tank for measuring the hydrodynamic forces and moments relevant to the position of hydrodynamic center. And, center-of-pressure coefficients ($C_p$) and moment coefficients ($C_M$) of each plate as a function of the angle of attack were calculated for estimating the static stability from hydrodynamic forces. The obtained results are summarized as follows ; 1. When the angle of attack for otter board is changed from equilibrium for some reason, moments depending upon tensions of warp and sweep line always act in order to have the static stability, respectively. 2. Position of center-of-pressure of each flat plate moves from leading edge to center of plate with the increase of the angle of attack. It means that the moment of hydrodynamic force acting on flat plates also increases the static stability of plate. 3. With the increase of the angle of attack for cambered plates, the positions of center of-pressure move from trailing to leading edge, and then turn toward center of plate. As the camber ratios increase, the ranges of the angle of attack of the static un stability depending on moment of hydrodynamic force become wide.