• Title/Summary/Keyword: swarm system

Search Result 377, Processing Time 0.025 seconds

Indirect Configuration Control of Embedded Swarm System Based on Human-Swarm Interaction (임베디드 군집 시스템의 상호작용 기반 간접적 군집 구성 제어)

  • Byun, Heejung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.1
    • /
    • pp.19-24
    • /
    • 2019
  • Embedded swarm systems consist of a large number of robots that use local control laws based on spatial information nearby environment and adjacent robots. In this paper, we propose a new scheme for indirect swarm configuration in swarm interaction system to adapt the swarm operation according to the desired goal. Also, we provide a method for the operator to observe the state of the swarm, which results in providing appropriate input to the swarm. We analyze the stability properties of the proposed swarm system and show the simulation results.

Swarm Control of Distributed Autonomous Robot System based on Artificial Immune System using PSO (PSO를 이용한 인공면역계 기반 자율분산로봇시스템의 군 제어)

  • Kim, Jun-Yeup;Ko, Kwang-Eun;Park, Seung-Min;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.465-470
    • /
    • 2012
  • This paper proposes a distributed autonomous control method of swarm robot behavior strategy based on artificial immune system and an optimization strategy for artificial immune system. The behavior strategies of swarm robot in the system are depend on the task distribution in environment and we have to consider the dynamics of the system environment. In this paper, the behavior strategies divided into dispersion and aggregation. For applying to artificial immune system, an individual of swarm is regarded as a B-cell, each task distribution in environment as an antigen, a behavior strategy as an antibody and control parameter as a T-cell respectively. The executing process of proposed method is as follows: When the environmental condition changes, the agent selects an appropriate behavior strategy. And its behavior strategy is stimulated and suppressed by other agent using communication. Finally much stimulated strategy is adopted as a swarm behavior strategy. In order to decide more accurately select the behavior strategy, the optimized parameter learning procedure that is represented by stimulus function of antigen to antibody in artificial immune system is required. In this paper, particle swarm optimization algorithm is applied to this learning procedure. The proposed method shows more adaptive and robustness results than the existing system at the viewpoint that the swarm robots learning and adaptation degree associated with the changing of tasks.

Research of Small Fixed-Wing Swarm UAS (소형 고정익 무인기 군집비행 기술 연구)

  • Myung, Hyunsam;Jeong, Junho;Kim, Dowan;Seo, Nansol;Kim, Yongbin;Lee, Jaemoon;Lim, Heungsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.12
    • /
    • pp.971-980
    • /
    • 2021
  • Recently popularized drone technologies have revealed that low-cost small unmanned aerial vehicles(UAVs) can be a significant threat to prevailing power by operating in group or in swarms. Researchers in many countries have tried to utilize integrated swarm unmanned aerial system(SUAS) in the battlefield. Agency for Defense Development also identified four core technologies in developing SUAS: swarm control, swarm network, swarm information, and swarm collaboration, and the authors started researches on swarm control and network technologies in order to be able to operate vehicle platforms as the first stage. This paper introduces design and integration of SUAS consisting of small fixed-wing UAVs, swarm control and network algorithms, a ground control system, and a launcher, with which swarm control and network technologies have been verified by flight tests. 19 fixed-wing UAVs succeeded in swarm flight in the final flight test for the first time as a domestic research.

Path Planning of Swarm Mobile Robots Using Firefly Algorithm (Firefly Algorithm을 이용한 군집 이동 로봇의 경로 계획)

  • Kim, Hue-Chan;Kim, Je-Seok;Ji, Yong-Kwan;Park, Jahng-Hyon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.435-441
    • /
    • 2013
  • A swarm robot system consists of with multiple mobile robots, each of which is called an agent. Each agent interacts with others and cooperates for a given task and a given environment. For the swarm robotic system, the loss of the entire work capability by malfunction or damage to a single robot is relatively small and replacement and repair of the robot is less costly. So, it is suitable to perform more complex tasks. The essential component for a swarm robotic system is an inter-robot collaboration strategy for teamwork. Recently, the swarm intelligence theory is applied to robotic system domain as a new framework of collective robotic system design. In this paper, FA (Firefly Algorithm) which is based on firefly's reaction to the lights of other fireflies and their social behavior is employed to optimize the group behavior of multiple robots. The main application of the firefly algorithm is performed on path planning of swarm mobile robots and its effectiveness is verified by simulations under various conditions.

Particle Swarm Optimization for Redundancy Allocation of Multi-level System considering Alternative Units (대안 부품을 고려한 다계층 시스템의 중복 할당을 위한 입자 군집 최적화)

  • Chung, Il Han
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.4
    • /
    • pp.701-711
    • /
    • 2019
  • Purpose: The problem of optimizing redundancy allocation in multi-level systems is considered when each item in a multi-level system has alternative items with the same function. The number of redundancy of multi-level system is allocated to maximize the reliability of the system under path set and cost limitation constraints. Methods: Based on cost limitation and path set constraints, a mathematical model is established to maximize system reliability. Particle swarm optimization is employed for redundant allocation and verified by numerical experiments. Results: Comparing the particle swarm optimization method and the memetic algorithm for the 3 and 4 level systems, the particle swarm optimization method showed better performance for solution quality and search time. Particularly, the particle swarm optimization showed much less than the memetic algorithm for variation of results. Conclusion: The proposed particle swarm optimization considerably shortens the time to search for a feasible solution in MRAP with path set constraints. PS optimization is expected to reduce search time and propose the better solution for various problems related to MRAP.

A combustion control modeling of coke oven by Swarm-based fuzzy system (스왐기반 퍼지시스템을 이용한 코크오븐 연소제어 모델링)

  • Ko, Ean-Tae;Hwang, Seok-Kyun;Lee, Jin-S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.493-495
    • /
    • 2005
  • This paper proposes a swarm-based fuzzy system modeling technique for coke oven combustion control diagnosis. The coke plant produces coke for the blast furnace plant in steel making process by charging coal into oven and supplying gas to carbonize it. A conventional mathematical model for coke oven combustion control has been used to control the amount of gas input, but it does not work well because of highly nonlinear feature of coke plant. To solve this problem, swarm-based fuzzy system modeling technique is suggested to construct a diagnosis model of coke oven combustion control. Based on the measured input-output data pairs, the fuzzy rules are generated and the parameters are tuned by the PSO(Particle Swarm Optimizer) to increase the accuracy of the fuzzy system is operated. This system computes the proper amount of gas input taking the operation conditions of coke oven into account, and compares the computed result with the supplied gas input.

  • PDF

Prewarping Techniques Using Fuzzy system and Particle Swarm Optimization (퍼지 시스템과 Particle Swarm Optimization(PSO)을 이용한 Prewarping 기술)

  • Jang, U-Seok;Gang, Hwan-Il
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.272-274
    • /
    • 2006
  • In this paper, we concentrate on the mask design problem for optical micro-lithography. The pre-distorted mask is obtained by minimizing the error between the designed output image and the projected output image. We use the particle swarm optimization(PSO) and fuzzy system to insure that the resulting images are identical to the desired image. Our method has good performance for the iteration number by an experiment.

  • PDF

A Swarm System Design Based on Coupled Nonlinear Oscillators for Cooperative Behavior

  • Kim, Dong-Hun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.301-307
    • /
    • 2003
  • A control system design based on coupled nonlinear oscillators (CNOs) for a self- organized swarm system is presented. In this scheme, agents self-organize to flock and arrange group formations through attractive and repulsive forces among themselves using CNOs. Virtual agents are also used to create richer group formation patterns. The objective of the swarm control in this paper is to follow a moving target with a final group formation in the shortest possible time despite some obstacles. The simulation results have shown that the proposed scheme can effectively construct a self-organized multi-agent swarm system capable of group formation and group immigration despite the emergence of obstacles.

A Self-Organizing Scheme for Swarm Systems

  • Kim, Dong-Hun;Kim, Hong-Pil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2475-2480
    • /
    • 2003
  • A control system design based on coupled nonlinear oscillators (CNOs) for a self-organized swarm system is presented. In this scheme, agents self-organize to flock and arrange group formations through attractive and repulsive forces among themselves using CNOs. Virtual agents are also used to create richer group formation patterns. The objective of the swarm control in this paper is to follow a moving target with a final group formation in the shortest possible time despite some obstacles. The simulation results have shown that the proposed scheme can effectively construct a self-organized multi-agent swarm system capable of group formation and group immigration despite the emergence of obstacles.

  • PDF

Development of Operation Network System and Processor in the Loop Simulation for Swarm Flight of Small UAVs (소형 무인기들의 군집비행을 위한 운영 네트워크 시스템과 PILS 개발)

  • Kim, Sung-Hwan;Cho, Sang-Ook;Cho, Seong-Beom;Park, Choon-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.433-438
    • /
    • 2012
  • In this paper, a operation network system equipped with onboard wireless communication systems and ground-based mission control systems is proposed for swarm flight of small UAVs. This operating system can be divided into two networks, UAV communication network and ground control system. The UAV communication network is intend to exchange the informations of navigation, mission and flight status with minimum time delay. The ground control system consisted of mission control systems and UDP network. Proposed operation network system can make a swarm flight of various UAVs, execute complex missions decentralizing mission to several UAVs and cooperte several missions. Finally, PILS environments are developed based on the total operating system.