• 제목/요약/키워드: svm

검색결과 2,150건 처리시간 0.031초

SVM 기반 사물 인식을 위한 고성능 벡터 내적 연산 회로의 MPW 칩 구현 및 검증 (MPW Chip Implementation and Verification of High-performance Vector Inner Product Calculation Circuit for SVM-based Object Recognition)

  • 신재호;김수진;조경순
    • 전자공학회논문지
    • /
    • 제50권11호
    • /
    • pp.124-129
    • /
    • 2013
  • 본 논문은 SVM 알고리즘 기반의 실시간 사물 인식을 위한 고성능 벡터 내적 연산 회로를 제안한다. SVM 알고리즘은 다른 사물 인식 알고리즘에 비해 인식률이 높지만 연산량이 많다. 벡터 내적 연산은 SVM 알고리즘 연산의 주요 연산으로 사용되므로 실시간 사물 인식을 위해서는 고성능 벡터 내적 연산 회로의 구현이 필수적이다. 제안하는 회로는 연산 속도를 높이기 위해 6단 파이프라인 구조를 적용하였으며 SVM 기반 실시간 사물 인식을 가능하게 한다. 제안하는 회로는 Verilog HDL을 사용하여 RTL로 구현하였으며 실리콘 검증을 위해 TSMC 180nm 표준 셀 라이브러리를 이용하여 MPW 칩으로 제작하였다. 테스트 보드와 검증 애플리케이션 소프트웨어를 개발하고 이를 사용하여 MPW 칩의 동작을 확인하였다.

Rough Set Theory와 Support Vector Machine 알고리즘을 이용한 RSIDS 설계 (A Design of RSIDS using Rough Set Theory and Support Vector Machine Algorithm)

  • 이병관;정은희
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권12호
    • /
    • pp.179-185
    • /
    • 2012
  • 본 논문에서는 RST(Rough Set Theory)과 SVM(Support Vector Machine) 알고리즘을 이용한 RSIDS (RST and SVM based Intrusion Detection System)를 설계하였다. RSIDS는 PrePro(Preprocessing) 모듈, RRG(RST based Rule Generation) 모듈, 그리고 SAD(SVM based Attack Detection) 모듈로 구성된다. PrePro 모듈은 수집한 정보를 RSIDS의 데이터 형식에 맞게 변경한다. RRG 모듈은 공격 자료를 분석하여 공격 규칙을 생성하고, 그 규칙을 이용하여 대량화된 데이터에서 공격정보를 추출하고, 그리고 추출한 공격정보를 SAD 모듈에 전달한다. SAD 모듈은 추출된 공격 정보를 이용하여 공격을 탐지하여 관리자에게 통보한다. 그 결과, 기존의 SVM과 비교해볼 때, RSIDS는 평균 공격 탐지율 77.71%에서 85.28%로 향상되었으며, 평균 FPR은 13.25%에서 9.87%로 감소하였다. 따라서 RSIDS는 기존의 SVM을 이용한 공격 탐지 기법보다 향상되었다고 할 수 있다.

Classification of 18F-Florbetaben Amyloid Brain PET Image using PCA-SVM

  • Cho, Kook;Kim, Woong-Gon;Kang, Hyeon;Yang, Gyung-Seung;Kim, Hyun-Woo;Jeong, Ji-Eun;Yoon, Hyun-Jin;Jeong, Young-Jin;Kang, Do-Young
    • 대한의생명과학회지
    • /
    • 제25권1호
    • /
    • pp.99-106
    • /
    • 2019
  • Amyloid positron emission tomography (PET) allows early and accurate diagnosis in suspected cases of Alzheimer's disease (AD) and contributes to future treatment plans. In the present study, a method of implementing a diagnostic system to distinguish ${\beta}$-Amyloid ($A{\beta}$) positive from $A{\beta}$ negative with objectiveness and accuracy was proposed using a machine learning approach, such as the Principal Component Analysis (PCA) and Support Vector Machine (SVM). $^{18}F$-Florbetaben (FBB) brain PET images were arranged in control and patients (total n = 176) with mild cognitive impairment and AD. An SVM was used to classify the slices of registered PET image using PET template, and a system was created to diagnose patients comprehensively from the output of the trained model. To compare the per-slice classification, the PCA-SVM model observing the whole brain (WB) region showed the highest performance (accuracy 92.38, specificity 92.87, sensitivity 92.87), followed by SVM with gray matter masking (GMM) (accuracy 92.22, specificity 92.13, sensitivity 92.28) for $A{\beta}$ positivity. To compare according to per-subject classification, the PCA-SVM with WB also showed the highest performance (accuracy 89.21, specificity 71.67, sensitivity 98.28), followed by PCA-SVM with GMM (accuracy 85.80, specificity 61.67, sensitivity 98.28) for $A{\beta}$ positivity. When comparing the area under curve (AUC), PCA-SVM with WB was the highest for per-slice classifiers (0.992), and the models except for SVM with WM were highest for the per-subject classifier (1.000). We can classify $^{18}F$-Florbetaben amyloid brain PET image for $A{\beta}$ positivity using PCA-SVM model, with no additional effects on GMM.

함수근사를 위한 서포트 벡터 기계의 커널 애더트론 알고리즘 (Kernel Adatron Algorithm of Support Vector Machine for Function Approximation)

  • 석경하;황창하
    • 한국정보처리학회논문지
    • /
    • 제7권6호
    • /
    • pp.1867-1873
    • /
    • 2000
  • 함수근사는 과학과 고학부야에서 공범위하게 응용된다. 시포트 벡터 기계(support vector machine, SVM)는 원래 분류를 위해 계안되어져 문자인식, 얼굴인식 등의 응용분야에서 좋은 결과를 보여주고 있다. 최근 SVM이론 함수근사로 확장되어 많이 활용되려 하고 있다. 그러나 함수근사를 위한 SVM 알고리즘은 QP(quadratic proramming)문제와 관련되어있어 계산에 시간이 걸리며 QP를 위한 패키지가 있어야 한다. 본 논문에서는 함수근사를 위해 커널-애더트론 알고리즘을 이용한 SVM을 제안하고 QP를 이용한 SVM과 성능을 비교하고자 한다.

  • PDF

SVM을 이용한 얼굴 검출 성능 향상에 대한 연구 (A Study on the Performance Enhancement of Face Detection using SVM)

  • 이지근;정성태
    • 한국정보통신학회논문지
    • /
    • 제9권2호
    • /
    • pp.330-337
    • /
    • 2005
  • 본 논문에서는 SVM(Support Vector Machine)을 이용하여 얼굴 검출 성능을 향상시키는 방법을 제안한다. 본 논문에서는 먼저 영상내의 거대한 특징 집합으로부터 중요한 작은 특징 집합을 선택하는 AdaBoost 기반 객체 검출 방법을 사용하여 얼굴 후보 영역을 검출한다. 그 다음에는 특징 벡터에 대해 SVM 기반 이진분류를 수행하여 후보 영역의 영상이 얼굴인지 아닌지를 판별한다 실험 결과 본문에서 제안한 방법은 기존의 방법에 비하여 얼굴 검출의 정확도를 향상시켰다.

Deep LS-SVM for regression

  • Hwang, Changha;Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권3호
    • /
    • pp.827-833
    • /
    • 2016
  • In this paper, we propose a deep least squares support vector machine (LS-SVM) for regression problems, which consists of the input layer and the hidden layer. In the hidden layer, LS-SVMs are trained with the original input variables and the perturbed responses. For the final output, the main LS-SVM is trained with the outputs from LS-SVMs of the hidden layer as input variables and the original responses. In contrast to the multilayer neural network (MNN), LS-SVMs in the deep LS-SVM are trained to minimize the penalized objective function. Thus, the learning dynamics of the deep LS-SVM are entirely different from MNN in which all weights and biases are trained to minimize one final error function. When compared to MNN approaches, the deep LS-SVM does not make use of any combination weights, but trains all LS-SVMs in the architecture. Experimental results from real datasets illustrate that the deep LS-SVM significantly outperforms state of the art machine learning methods on regression problems.

SVM과 신경회로망을 이용한 비선형시스템의 고장감지와 분류방법 연구 (A Study on a Fault Detection and Isolation Method of Nonlinear Systems using SVM and Neural Network)

  • 이인수;조정환;서해문;남윤석
    • 제어로봇시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.540-545
    • /
    • 2012
  • In this paper, we propose a fault diagnosis method using artificial neural network and SVM (Support Vector Machine) to detect and isolate faults in the nonlinear systems. The proposed algorithm consists of two main parts: fault detection through threshold testing using a artificial neural network and fault isolation by SVM fault classifier. In the proposed method a fault is detected when the errors between the actual system output and the artificial neural network nominal system output cross a predetermined threshold. Once a fault in the nonlinear system is detected the SVM fault classifier isolates the fault. The computer simulation results demonstrate the effectiveness of the proposed SVM and artificial neural network based fault diagnosis method.

SVM기법을 이용한 진동계의 고장진단에 관한 연구 (Abnormal Diagnostics of Vibration System using SVM)

  • 고광원;오용설;정근용;허훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.932-937
    • /
    • 2003
  • When oil pressure of damper is lost or relative stiffness of spring drops in vibration system, it can be fatally dangerous situation. A fault diagnosis method for vibration system using Support Vector Machine(SVM)is suggested in the paper. SVM is used to classify input data or applied to function regression. System status can be classified by judging input data based on optimal separable hyperplane obtained using SVM which learns normal and abnormal status. It is learned from the relationship of system state variables in term of spring, mass and damper. Normal and abnormal status are learned using phase plane as in put space, then the learned SVM is used to construct algorithm to predict the system status quantitatively

  • PDF

다중 클래스 분류를 위한 강인한 SVM 설계 방법 - 생체 인식 데이터에의 적용 - (Robust SVM Design for Multi-Class Classification - Application to Biometric data -)

  • 조민국;박혜영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.760-762
    • /
    • 2005
  • Support vector machine(SVM)은 졸은 일반화 능력을 가진 학습시스템으로, 최근 다양한 패턴 인식 분야에서 적용되고 있다. SVM은 기본적으로 이진 분류기이므로 두 개 이상의 클래스를 분류하기 위해서는 다중 클래스 분류가 가능한 형태로의 설계 방법이 필요하다. 이를 위해 각 클래스별로 독립적인 SVM들을 만들어 결과를 병합하는 방식이 주로 사용되어 왔다. 그러나 이러한 방법은 클래스의 수는 않고 한 클래스 내의 데이터의 수가 많지 않은 경우에는 SVM의 일반화 성능을 저하시키고 노이즈에 민감해지는 문제점을 가지고 있다. 이를 해결하기 위해 본 논문에서는 각 클래스내의 데이터간의 유사도 측정을 위한 통계적 정보를 안정적으로 추출하기 위해 두 데이터의 쌍을 입력으로 받는 새로운 SVM 설계 방법을 제시한다. 제안한 방법을 실제 생체인식 데이터에 적용한 실험에서 기존의 방법보다 우수한 분류 성능을 보임을 확인할 수 있었다.

  • PDF

SVM을 이용한 슬라이딩 평면 구성에 있어서 초기치의 영향에 관한 연구 (A Study on the sliding surface design considering initial states)

  • 최영훈;곽군평;윤태성;박승규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1652-1653
    • /
    • 2007
  • 가변제어구조로 동작하는 슬라이딩모드제어(SMC)는 플렌트의 파라미터 변동과 부하왜형에 관계없이 스위칭 제어 알고리즘에 의해 위상 평면에서 미리 예측된 궤적 또는 기준모델을 따라 구동응답을 주어진 슬라이딩 면을 따라 강제로 추종시키는 것이다. 여기서 슬라이딩 평면을 찾아내는 방법의 하나로 SVM(Suppot Vector Machine) 을 사용한다. 그런데 SVM을 사용하여 슬라이딩 평면을 찾아내는 과정에서, 초기치의 변동이 있을 경우, SVM 모델을 재구성해야 해야 한다. 이에 본 논문에서는 SVM 모델을 재구성할 필요 없이, 기존 초기치에 의한 SVM 모델에서, 원하는 초기치의 SVM모델로 변경할 수 있는 방법을 제안한다.

  • PDF