• Title/Summary/Keyword: sustainable use

Search Result 1,531, Processing Time 0.033 seconds

Concept and Indicators of Eco-Efficient Water Infrastructure for Asia and the Pacific

  • Lee, Seung-Ho;Kang, Boo-Sik;Hong, Il-Pyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.2169-2175
    • /
    • 2009
  • This research aims to evaluate the concept of eco-efficient water infrastructure and provides a list of case studies in order to help understand the applicability of eco-efficient water infrastructure to Asia and the Pacific. A set of indicators have been explored to assess eco-efficiency in water infrastructure for the region on a micro and macro scale. The core idea of eco-efficiency, 'more value with less impact (on the environment)', has proven to be applicable in management of water infrastructure. The fundamental elements in eco-efficient water infrastructure should encompass physical infrastructure and non-physical infrastructure, which is more needed particularly in Asian countries. The case studies have demonstrated the applicability of the concept of eco-efficient water infrastructure. The Republic of Korea has provided the case of the eco-friendly approaches to enhance dam management and its innovative solutions how to use water more efficiently through state-of-art technologies. The experiences of Singapore are some of the best evidence to establish eco-efficient water infrastructure, for instance, the NEWater project via application of cutting edge technologies (recycled water) and institutional reform in water tariff systems to conserve water as well as enhance water quality. A list of indicators to assess eco-efficiency in water infrastructure have been discussed, and the research presents a myriad of project cases which are good to represent eco-efficiency in water infrastructure, including multipurpose small dams, customized flood defense systems, eco-efficient ground water use, and eco-efficient desalination plants. The study has presented numerous indicators in five different categories: 1) the status of water availability and infrastructure; 2) production and consumption patterns of freshwater; 3) agricultural products and sources of environmental loads; 4) damages from water-caused natural disaster; and 5) urban water supply and sanitation. There are challenges as well as benefits in such indicators, since the indicators should be applied very carefully in accordance with specific socio-economic, political and policy contexts in different countries in Asia and the Pacific Region. The key to success of establishment of eco-efficient water infrastructure in Asia primarily depends on the extent to which each country is committed to balancing its development of physical as well as non-physical water infrastructure. Particularly, it is imperative for Asian countries to transform its policy focus from physical infrastructure to non-physical infrastructure. Such shift will help lead to implementation of sustainable in Asian countries.

  • PDF

Prediction on the amount of river water use using support vector machine with time series decomposition (TDSVM을 이용한 하천수 취수량 예측)

  • Choi, Seo Hye;Kwon, Hyun-Han;Park, Moonhyung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.1075-1086
    • /
    • 2019
  • Recently, as the incidence of climate warming and abnormal climate increases, the forecasting of hydrological factors such as precipitation and river flow is getting more complicated, and the risk of water shortage is also increasing. Therefore, this study aims to develop a model for predicting the amount of water intake in mid-term. To this end, the correlation between water intake and meteorological factors, including temperature and precipitation, was used to select input factors. In addition, the amount of water intake increased with time series and seasonal characteristics were clearly shown. Thus, the preprocessing process was performed using the time series decomposition method, and the support vector machine (SVM) was applied to the residual to develop the river intake prediction model. This model has an error of 4.1% on average, which is higher accuracy than the SVM model without preprocessing. In particular, this model has an advantage in mid-term prediction for one to two months. It is expected that the water intake forecasting model developed in this study is useful to be applied for water allocation computation in the permission of river water use, water quality management, and drought measurement for sustainable and efficient management of water resources.

A Study on the Factors of Satisfaction & WOM Regarding to Financial Institutions Internet and Smartphones Application On-line Usage of Financial Customers (금융소비자의 인터넷, 스마트폰 어플리케이션 등 금융기관 온라인 시스템 이용에 따른 만족과 구전에 미치는 효과 요인 연구)

  • Jeon, Seong-Ki;Kwon, Man-Woo;Lee, Sang-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.8
    • /
    • pp.183-194
    • /
    • 2020
  • Recently, in Korea, financial institutions such as banks are most severely affected by the universalization of the Internet and smartphones. On the other hand, the use of online systems by financial institutions keeps increasing; the convenience of online services has a significant influence on the attraction and the retention of financial customers; consumer needs are also diversely expressed. This paper deduces from the precedent researches a mechanism that online financial system enhances the trust of customers -the medium of the online system and other customers- and its perceived easiness affects its perceived effectiveness and then all these internal variables induce satisfaction. Plus, this paper aims at verification of the hypothesis in terms of an extended technology acceptance model, based on the hypothesis that word of mouth and repurchase are significantly linked to this mechanism. Through this study, the researchers tried to check how the online service quality and emotional factors of financial institutions affect the users in accordance with the trend of changes in the service usage method of financial institutions, and confirmed that the hypothesis was not rejected.

Balcony window style photo-voltaic(PV) system design by considering resident's residential time rate - Focus on the design of apartment building balcony window PV system and it's performance - (거주자 주택 점유율을 고려한 공동주택 발코니 PV시스템 디자인 - 공동주택의 발코니 PV시스템 디자인과 성능검증 중심으로 -)

  • Chin, Kyung-Il
    • Korean Institute of Interior Design Journal
    • /
    • v.18 no.5
    • /
    • pp.101-110
    • /
    • 2009
  • In case of general residential house, photovoltaic can be installed at roof, wall, and any other places. But, in case of apartment building, there has not enough roof space to install photovoltaic panels to supply enough electricity. Actually, apartment building roof and facade wall (exclude the balcony window space) is not enough space to produce and supply the electricity to residents by installing PV panel. Generally, the space of facade balcony with windows in facade wall at apartment building occupied about $70{\sim}80%$, in all facade space. So, if we could use the balcony and windows space in facade as PV to generating electricity, there could contribute the energy saying. But, PV cell is opacify. So if it installed at front window area in apartment building, residents may have displeasure for that opacity character. But the other hand, residents are not always in house especially in day time that is exactly good time for generating electricity by PV. If we can use PV at the facade balcony with window without collusion of resident's displeasure, there have good attraction to using sustainable energy. Hence, this study suggests the design of facade balcony window style PV by considering resident's living pattern in apartment building. The methods of this study are as follows. At first, this study surveyed to the residents about residential time in their home and asked user demand by Delphi survey. At second, this study designed balcony open style PV system which oriented to the user demand. At third, this study tests designed result performance by computer simulation that compared design result with old design. As a result, For the purpose of satisfying the resident demand, there designed sliding window style which slide the several door systems to the one side. That would be make balcony absolute open scenery to the residents. Hence, the designed system performance results were as follows. When we compare the small apartment and large apartment, smaller one has good performance than larger one. Because resident's residential time characteristic. And that has more good electronic performance than vertical style that is similar to roof style.

The Study on Property Criteria of Soil Dressing, Mounding and Earth Cutting for Farmland Preservation

  • Hyun, Byung-Keun;Sonn, Yeon-Kyu;Park, Chan-Won;Chun, Hyen-Chung;Cho, Hyun-Jun;Song, Kwan-Cheol;Zhang, Yong-Seon;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.1
    • /
    • pp.36-40
    • /
    • 2014
  • Korea's agricultural land is constantly being reduced. The reasons for this are due to the change of agricultural profitability and the policy conditions. The reduction of agricultural land in 2010 showed a decline trend by 14.4 % of paddy fields and 1.2% of uplands compared to areas from 2000. These reductions were mainly due to switch rice paddy fields into upland or greenhouse facility cultivation because of low profitability of rice products compared to farm products. In addition, the permit system of agricultural areas was relaxed in switching paddy fields and this accelerated the reduction of agricultural land. For this reason, more than 1% of agricultural land area has been reduced every year for last five years. Moreover, indiscreet fill and cover materials such as construction wastes were used in agricultural lands and caused land contamination which threatened foundation as sustainable agricultural lands. For these reasons, it is a desperate situation to conserve good agricultural lands. However, the standards of transported soils, filling soils and cutting soils in the Agricultural Land Act are qualitative and have a problem of causing complaints. Therefore, the following criteria (proposals) are proposed in the Agricultural Land Act; (1) Use the proper soils for crops (criterion), (2) Soil components and amounts should be proper as transported soils (range), and (3) Prohibiting usage of improper earth rocks or recycled aggregates in case of filling soils (kinds). The presented criteria (proposals) suggest following; (1) Use physio-chemically proper soils for crops (criterion), (2) In case of transported soils, i, exclude potential acid sulphate soils, ii, gravel content sould be less than 15%, and iii, Heavy metals and other contaminants should be less than the soil contamination warning limit from the Ministry of Environments, (3) In case of filling soils, 13 kinds of recycled wastes specified in the Wastes Control Act should not be used as filling soils, (4) Practice soil conservation technology in case of sloping areas, and (5) Follow proper fertilizer application standards for maturing paddy fields and uplands when cutting soils.

Strength properties of composite clay balls containing additives from industry wastes as new filter media in water treatment

  • Rajapakse, J.P.;Gallage, C.;Dareeju, B.;Madabhushi, G.;Fenner, R.
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.859-872
    • /
    • 2015
  • Pebble matrix filtration (PMF) is a water treatment technology that can remove suspended solids in highly turbid surface water during heavy storms. PMF typically uses sand and natural pebbles as filter media. Hand-made clay pebbles (balls) can be used as alternatives to natural pebbles in PMF treatment plants, where natural pebbles are not readily available. Since the high turbidity is a seasonal problem that occurs during heavy rains, the use of newly developed composite clay balls instead of pure clay balls have the advantage of removing other pollutants such as natural organic matter (NOM) during other times. Only the strength properties of composite clay balls are described here as the pollutant removal is beyond the scope of this paper. These new composite clay balls must be able to withstand dead and live loads under dry and saturated conditions in a filter assembly. Absence of a standard ball preparation process and expected strength properties of composite clay balls were the main reasons behind the present study. Five different raw materials from industry wastes: Red Mud (RM), Water Treatment Alum Sludge (S), Shredded Paper (SP), Saw Dust (SD), and Sugar Mulch (SM) were added to common clay brick mix (BM) in different proportions. In an effort to minimize costs, in this study clay balls were fired to $1100^{\circ}C$ at a local brick factory together with their bricks. A comprehensive experimental program was performed to evaluate crushing strength of composite hand-made clay balls, using uniaxial compression test to establish the best material combination on the basis of strength properties for designing sustainable filter media for water treatment plants. Performance at both construction and operating stages were considered by analyzing both strength properties under fully dry conditions and strength degradation after saturation in a water bath. The BM-75% as the main component produced optimum combination in terms of workability and strength. With the material combination of BM-75% and additives-25%, the use of Red Mud and water treatment sludge as additives produced the highest and lowest strength of composite clay balls, with a failure load of 5.4 kN and 1.4 kN respectively. However, this lower value of 1.4 kN is much higher than the effective load on each clay ball of 0.04 kN in a typical filter assembly (safety factor of 35), therefore, can still be used as a suitable filter material for enhanced pollutant removal.

The Saemangeum: History and Controversy (새만금: 역사와 갈등)

  • Koh, Chul-Hwan;Ryu, Jong-Seong;Khim, Jong-Seong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.4
    • /
    • pp.327-334
    • /
    • 2010
  • The paper describes the history and the evolution of the conflict of the Saemangeum reclamation project, focusing on the court trial processes. The Saemangeum project is the world largest coastal reclamation work, regarded as the most controversial environmental issue in the recent history of Korea. Due to the severe pollution found in Lake Sihwa in 1996, the Saemangeum project began to receive a large degree of public concern on the water quality of the proposed artificial freshwater lake. Unlike the Sihwa case, the Korean court system intervened to resolve the heated conflicts between stakeholders in the Saemangeum case. Based on the same set of facts, the Korean courts showed different perspectives on the economic feasibility, value of the ecosystem, land use, and water quality, which represents the limit of legal system to address complicated environmental problems. After the final judgment by the Supreme Court, 'the Special Act for the promotion of the Saemangeum reclamation project', was enacted with strong political support from local leaders and congressmen. A more developmental-oriented land use plan came out in 2009 based on this Act. The Saemangeum project walked along the different pathway from the Sihwa case. The area should be managed in sustainable manners to appropriately consider conservation and development for the prosperity of local residents and future generations.

A Review on the Management of Water Resources Information based on Big Data and Cloud Computing (빅 데이터와 클라우드 컴퓨팅 기반의 수자원 정보 관리 방안에 관한 검토)

  • Kim, Yonsoo;Kang, Narae;Jung, Jaewon;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.100-112
    • /
    • 2016
  • In recent, the direction of water resources policy is changing from the typical plan for water use and flood control to the sustainable water resources management to improve the quality of life. This change makes the information related to water resources such as data collection, management, and supply is becoming an important concern for decision making of water resources policy. We had analyzed the structured data according to the purpose of providing information on water resources. However, the recent trend is big data and cloud computing which can create new values by linking unstructured data with structured data. Therefore, the trend for the management of water resources information is also changing. According to the paradigm change of information management, this study tried to suggest an application of big data and cloud computing in water resources field for efficient management and use of water. We examined the current state and direction of policy related to water resources information in Korea and an other country. Then we connected volume, velocity and variety which are the three basic components of big data with veracity and value which are additionally mentioned recently. And we discussed the rapid and flexible countermeasures about changes of consumer and increasing big data related to water resources via cloud computing. In the future, the management of water resources information should go to the direction which can enhance the value(Value) of water resources information by big data and cloud computing based on the amount of data(Volume), the speed of data processing(Velocity), the number of types of data(Variety). Also it should enhance the value(Value) of water resources information by the fusion of water and other areas and by the production of accurate information(Veracity) required for water management and prevention of disaster and for protection of life and property.

Risk Management for Environment Protection in Job Site Utilizing BIM Method (BIM을 활용한 현장시공의 친환경 위험관리에 관한 연구)

  • Li, Teng;Kim, Ju-Hyung;Kim, Jae-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.111-114
    • /
    • 2010
  • With the rise of green technology, the environmental question causes people’s attention more and more, based on objective of the sustainable development, the green risk has already begun to appear. In the paper the definition of the green risk of construction project is given, it analyzes and identifies the green risk of construction project from three aspects, based on BIM, the relation with green risk was found. Though the relation, the management of green risk was analyzed and we may take some measures to reduce the unnecessary risk and waste.

  • PDF

An Ecological Interpretation on Korean Traditional Dwelling Houses and Their Landscape Gardens (전통주택과 조경공간의 생태학적 해석 - 동계(桐溪) 정온(鄭蘊) 가옥과 전주(全州) 최씨(崔氏) 종택을 중심으로 -)

  • So, Hyun-Su
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.1
    • /
    • pp.120-130
    • /
    • 2009
  • This study focuses on the methodology of an ecological interpretation of Korean traditional landscapes through both life-oriented philosophy and traditional Korean philosophy which are similar to ecology. Also, useful tools for discovering an ecological technique of formation based on the ecological thoughts in ancestors' life are shown. Ecological key words as interpretative tools on the traditional landscape replaced ecological concepts in Korean culture and landscape. There are 'Bonsung(本性; the original nature)', 'Chungjeol(中絶; moderation)', 'Hyoyul(效率; efficiency)', 'Sangsaeng(相生; symbiosis)', 'Jasaeng(自生; self-generation)', 'Chunghwa(中和; neutralization)', 'Bangtong(旁通; communication)', and 'Byuntong(變通; variableness)'. For the case study, the concepts of 'spatial structure', 'constructive elements in the traditional gardens', and 'structural elements in the dwelling houses' were extracted from $\ulcorner$Imwonkyeongjeji$\lrcorner$ as an interpretative subject. As a result, Jeongon house, Jongtaek of Choi's family(the first incoming resident) showed us an ecological technique of formation by interpretation on the composing elements. Namely, they are natural dwelling houses in harmony with natural conditions and delicate relational styles. Five kinds of ecological characteristics were exposed. They are: 1. land use method following natural features('本性' '相生' '中和'), 2. physical and spatial elements in a body with nature('中絶' '相生' '中和'), 3. sustainable circulation system by recycling limited resources('效率' '自生' '旁通'), 4. use of natural materials based on the regional climate ('中絶' '效率' '自生') and 5. plane and structural decision by microclimate('效率' '自生' '變通'). Consequently, the dwelling houses and their traditional gardens aimed at the consuming space of the efficient resources by utilizing and circulating natural energy more than different types of the traditional spaces.