• Title/Summary/Keyword: suspended particles

Search Result 353, Processing Time 0.02 seconds

Characterization of Aerosol Concentration during Severe Asian Dust Period at Busan, Korea in 20 March 2010 (2010년 3월 20일 부산지역에 발생한 극심한 황사의 에어로솔 농도 분포 특성)

  • Jung, Woon-Seon;Park, Sung-Hwa;Lee, Dong-In;Kang, Deok-Du;Kim, Dongchul
    • Journal of Environmental Science International
    • /
    • v.23 no.2
    • /
    • pp.275-289
    • /
    • 2014
  • Asian dust (or yellow sand) occurring mainly in spring in East Asia is affected by the distribution of weather systems. This study was performed to investigate the characteristics of suspended particulate for Asian dust at Busan, Korea in 20 March 2010, which was one of the extreme case for the last 10 years. There was used the data of weather chart, satellite, automatic weather system (AWS), $PM_{10}$, laser particle counter (LPC), and backward trajectories model. In synoptically, the high pressure was located in the northwestern part and low pressure was located in the northeastern part of Korea. The strong westerly winds from surface to upper layer makes it possible to move air masses rapidly. Air masses passing through Gobi Desert in Mongolia and Inner Mongolia plateau covered the entire Korean peninsula. As the results of aerosol analysis, $PM_{10}$ concentration at Gudeok mountain in Busan was recorded $2,344{\mu}g/m^3$ in 2300 LST 20 March 2010 and their concentration was markedly increased at coarse mode particle. In surface condition, westerly wind about 3 ~ 5 m/s was dominant and small particles of $0.3{\sim}0.5{\mu}m$ were distributed on the whole. In heavy metal components analysis, the elements from the land was predominated.

Comparison of Airborne Nanoparticle Concentrations between Carbon Nanotubes Growth Laboratories based on Containment of CVD (탄소나노튜브 성장 실험실에서 CVD 밀폐 여부에 따른 공기 중 나노입자 농도 비교)

  • Ha, Ju-Hyun;Shin, Yong-Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.3
    • /
    • pp.184-191
    • /
    • 2010
  • Although the usage of nanomaterials including carbon nanotubes (CNTs) has increased in various fields, scientific researches on workers' exposures and controls of these materials are very limited. The purpose of this study was to compare the airborne nanoparticles concentrations from two university laboratories conducting experiments of CNTs growth based on containment of thermal chemical vapor deposition (CVD). Airborne nanoparticle concentrations in three metrics (surface area concentration, particle number concentration, and mass concentrations) were measured by task using three direct reading instruments. In a laboratory where CVD was not contained, the surface area concentration, number concentration and mass(PM$_1$) concentration of airborne nanoparticles were 1.5 to 3.5 times higher than those in the other laboratory where CVD was confined. The ratio of PM$_1$ concentration to total suspended particles(TSP) in the laboratory where CVD was not confined was about 4 times higher than that in the other laboratory. This indicates that CVD is a major source of airbone nanoparticles in the CNTs growth laboratories. In conclusion, researchers performing CNTs growth experiments in these laboratories were exposed to airborne nanoparticles levels higher than background levels, and their exposures in a laboratory with the unconfined CVD were higher than those in the other laboratory with the confined CVD. It is recommended that in the CNTs growth laboratories adequate controls including containment of CVD be implemented for minimizing researchers' exposures to airborne nanoparticles.

Air Pollutant Variations Observed at Deokjeok Island in the Yellow Sea During April 1999 to June 2000 (1999년 4월부터 2000년 6월까지 황해 덕적도에서 관찰된 대기오염물질 변화 특성)

  • 김영성;이승복;김진영;배귀남;문길주;원재광;윤순창
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.4
    • /
    • pp.347-361
    • /
    • 2003
  • Sulfur dioxide (SO$_2$), ozone, total suspended particulates (TSP) and PM$_{2.5}$ were measured at Deokjeok Island in the Yellow Sea during April 1999 to June 2000. Although the emission amount of air pollutants is quite low in this small island of 36 km$^2$ with 1.4 thousand inhabitants, there are pollutant sources such as an oil -firing power plant and a wharf for ferryboat. The island is also influenced from the emissions from the greater Seoul area in the east and from China in the west. In order to characterize the pollutant variations due to interactions between transport and local emissions. the correlation between variations of SO$_2$ and ozone was investigated. Mass and ion concentrations of TSP and PM$_{2.5}$ were examined on selected episode days of positive and negative correlations between the two gaseous species in spring and winter. The effects of transport were pronounced on the days of positive correlation in spring with higher concentrations of ozone and PM$_{2.5}$. TSP concentrations were also high on these days because of high wind speeds. On the days of negative correlation in spring, frequent fog associated with low wind speeds facilitated SO$_2$ oxidation and increased sulfate accompanied with decrease in nitrate in PM$_{2.5}$ and chloride in TSP. This latter phenomena was noticeable since it showed that chemical composition of fine particles could be significantly altered not only during the transport but also by local environment.ronment.

The Meteorological, Physical, and Chemical Characteristics of Aerosol during Haze Event in May 2003 (2003년 5월의 연무 관측시 에어로졸의 기상 · 물리 · 화학 특성)

  • Lim, Ju-Yeon;Chun, Young-Sin;Cho, Kyoung-Mi;Lee, Sang-Sam;Shin, Hye-Jung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.5
    • /
    • pp.697-711
    • /
    • 2004
  • Severe haze, mist, and fog phenomena occurred in the central part of Korea during 15~25 May 2003 resulted in poor visibility and air quality. When these phenomena occurred, Korean peninsula was under the effects of anticyclone. The atmosphere was stable, and wind speed was so weak. Under this meteorological conditions, air quality was worse and worse. The characteristics of aerosol in Seoul, Incheon, and Gosan (Jeju) during this period are investigated from the $PM_{10}$. TSP concentrations and aerosol number concentrations. Concentrations of $PM_{10}$ and TSP measured at KMA increased upto 176 and 230 J.${\mu}g/m^3$ on 22 May 2003, respectively. Aerosol number concentrations of size range from 0.82 to 6.06 ${\mu}m$ increased in Seoul on 17, 19, and 21~24 May 2003, and the concentrations of $NO_2$ and $SO_2$had maximum value of 0.165 ppm at Gwanak Mt. and 0.036 ppm at Guro-dong on 23 May 2003, respectively. Result from analysis on heavy metal elements showed high concentrations of Zn, Pb, Cr, Ni, Cu, and Cd during 20~24 May 2003. This event is examined by comprehensive analyses of synoptic weather conditions, satellite images, concentrations of suspended particles and air pollutants, and heavy metal elements.

Characteristics of Bio-filter Support Media for the Odor Control (악취가스 제어를 위한 Bio-filter 담체의 특성 비교)

  • Lee, Hye-Sung;Chu, Duk-Sung;Jung, Joon-Oh
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.1
    • /
    • pp.101-107
    • /
    • 2008
  • Bio-filtration utilizes microorganisms fixed to a porous medium to metabolize pollutants present in an air stream. The microorganisms grow in a bio-film on the surface of a medium or are suspended in the water phase surrounding the medium particles. Therefore, bio-filter support media play one of the most important key roles in bio-filtration of gas phase pollutants. To characterize and select the appropriate support media, gas adsorption capacity and microorganism immobilization were investigated in lab-scale experiments for the selected target support media which were compost I (compost from lab-scale process), compost II (compost from municipal facility), bark, wood chip, orchid stone and vermiculite. As odor materials, ammonia and trimethylamine were utilized. From the result of experiments, bark was superior to any other support media tested in adsorption capacity as much as 12.5 mg ammonia per 1 g bark. In trimethylamine adsorption, bark and wood chip showed a remarkable results of 21.1 and 14.1 mg/g respectively. On the other hand, microorganism fixation test determined by the count of nitrogen oxidizing microbes population, the compost II and wood chips showed the best results. Considering the characteristics of materials and the operating condition of the bio-filter, bark, wood chip, and compost II are applicable to the support media of bio-filter when they are appropriately blended on the basis of studying the media pH, packing porosity and moisture contents.

A Study on Characteristics of Sedimentation Rate of Suspended Fine Particles under Floc Size and Density (플록의 입경과 밀도에 따른 부유된 미세 미립자의 침전률 특성에 관한 연구)

  • Kim, Jong-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.107-113
    • /
    • 2009
  • This paper considers the influence of floc on the sedimentation rate for the cohesive material. The effects of floc density and size changes were also taking into consideration during the experiment. The settling velocity of a discrete floc was measured in a quiescent water column. Floc diameter and density were investigated using a modified Stokes equation with some constants such as water density, viscosity, material density and the floc fractal dimension $n_f$ obtained from the relationship between the floc diameter and the floc settling. The floc diameter of quartz and alumina increased at increasing initial concentrations. The floc size of quartz with increasing NaCl concentration varied between approximately 0.8 um to $10{\mu}m$. Floc density decreased as floc size increased. The floc settling velocity and the floc diameter have a straight line relationship on a logarithm. The floc fractal dimension nf was 2.65 with increasing of initial concentration and 2.93 with increasing of NaCl. The exponent n to predict the settling velocity was proposed and varied from 1 to 1.93.

Research of Sea Food Wastewater Treatment using Membrane Filter (Membrane Filter를 이용한 수산물 가공폐수처리에 대한 연구)

  • Han, Dong-Joon
    • Journal of environmental and Sanitary engineering
    • /
    • v.22 no.4
    • /
    • pp.119-130
    • /
    • 2007
  • Sea food wastewater including high concentration of organics and nutrients is hard to treat stably by established traditional activated sludge process. This research is aimed to obey more and more of strengthened the law and to secure stable effluents by using advanced treatment process applied membrane filter in aeration tank for treatment of wastewater from marine products. It must maintain pH of influent over 6.0 to keep up stably biological sludge of advanced treatment process. At 38hr of HRT, removal rates of TBOD and TCOD were 99.9% and 99.4% respectively and TSS also removed with high efficiency. Most organics in the effluent was constituted with soluble type materials, it caused that membrane filter installed aeration tank should remove minute suspended particles. The reactor was operated well to get stable treatment results for operation period, in spite of high loading of organics like that $0.67{\sim}1.67\;kgTBOD/m^3/day$ of organics loading and $0.10{\sim}0.21\;kgBOD_5/kgMLSS/day$ of F/M ratio. At $36{\sim}48hr$ of HRT, removal rates of T-N and T-P were $89.7{\sim}90.7%\;and\;91.5{\sim}96.0%$ respectively. It means this treatment process also work to remove nutrients of high concentration. Upon investigation of advanced treatment's operation factors, optimum SRT was about 30days and average SNR that showed tendency to increase according to increase water temperature was calculated 0.014 gN/g MLVSS/d. SDNR was risen in conformity to increase F/M ratio of Non-aeration tank and investigated as $0.038{\sim}0.051\;gN/gMLVSS/d$.

Analysis of Particle Motion in Quadrupole Dielectrophoretic Trap with Emphasis on Its Dynamics Properties (사중극자 유전영동 트랩에서의 입자의 동특성에 관한 연구)

  • Chandrasekaran, Nichith;Yi, Eunhui;Park, Jae Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.10
    • /
    • pp.845-851
    • /
    • 2014
  • Dielectrophoresis (DEP) is defined as the motion of suspended particles in solvent resulting from polarization forces induced by an inhomogeneous electric field. DEP has been utilized for various biological applications such as trapping, sorting, separation of cells, viruses, nanoparticles. However, the analysis of DEP trapping has mostly employed the period-averaged ponderomotive forces while the dynamic features of DEP trapping have not been attracted because the target object is relatively large. Such approach is not appropriate for the nanoscale analysis in which the size of object is considerably small. In this study, we thoroughly investigate the dynamic response of trapping to various system parameters and its influence on the trapping stability. The effects of particle conductivity on its motion are also focused.

Characterization of Air Quality in Various Types of Indoor Environments in Urban Areas - Focusing on Homes, Offices, and Restaurants - (도시지역 실내환경 유형별 공기질 특성 평가 -가정, 사무실 및 식당을 중심으로-)

  • 백성옥;김윤신
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.4
    • /
    • pp.343-360
    • /
    • 1998
  • In this study, comprehensive air quality monitoring was undertaken with a variety of objectives to collect data on the levels of various indoor and ambient air quality parameters in the urban areas of Seoul and Taegu. The sampling sites were comprised of six offices, six residences and six restaurants in each city. The ambient air adjacent to the indoor sites was also simultaneously sampled for the same constituents. The sampling was conducted in two phases: summer of 1994 and winter of 1994/95. A range of air quality parameters were measured simultaneously, which include RSP, CO, COB, NOB, a range of VOC, airborne microbials, temperature, and relative humidity. The indoor and ambient levels of the pollutants measured in this study varied widely between the three types of environments studied. Comparison of median values for the three groups revealed that restaurants had higher indoor levels of most pollutants than homes or offices. There was also a clear pattern of the indoor levels of target pollutants being higher than those outdoors, particularly in restaurants. Concentrations of CO and most of the VOC were found to be significantly higher in the commercial districts, indicating the influence of vehicle exhaust emissions. A very wide range of VOC levels was documented in this study. Although median indoorloutdoor ratios indicated a generally increasing level of VOC indoors when compared to those outdoors, no statistically significant differences were found between indoor and outdoor VOC levels in homes and offices, implying the importance of ambient air quality in determining the quality of indoor air for homes and offices in urban areas. In addition, there was a general pattern of increasing concentrations from summer to winter, and similarly from outdoor to indoor air for nearly all target compounds. The seasonal differences in median levels were very clearly seen for fuel combustion related pollutants such as RSP, CO and VOC, this being attributed to the effects of increased fuel consumption during the cold season and to meteorological factors.

  • PDF

Analysis of Disk Filter Head Losses due to the Shapes of Disk Grooves in Drip Irrigation System (점적관개용 디스크 여과기의 디스크 홈 단면 형상에 따른 수두 손실 특성 분석)

  • Jung, Seung-Yeon;Choi, Won;Choi, Jin-Yong;Kim, Maga;Lee, Yoonhee
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.2
    • /
    • pp.25-36
    • /
    • 2018
  • Drip irrigation system is a low energy cost method which can efficiently save and supply water by dropping water slowly on the crop's root zone during crop growth. In the drip irrigation system, disk filters take an important role to physically remove impurity (inorganic and suspended organic) particles present in agricultural water which can cause emitter clogging. For the purpose, both top-and-bottom surfaces of the disk are grooved in micron size flowing from outside to inside. However, many congested flow paths in disk filter media incur higher head loss of inflow water resulting in relatively decreasing velocities depending on operation time than sand and mesh filters. Therefore, it is important to optimize the structure of disk filter in micro irrigation system. The head loss of disk filter media takes also charge of more than 60 % of total head loss in whole disk filter. This study is to find the appropriate cross-sectional shape of the disk groove to minimize the head loss by executing the experiment. The experiment used three disk filters that have similar filter body but have a half-elliptic and two kinds of triangular cross sections. The experimental results showed that the disk filter with half-elliptic cross sections of disk grooves have less head loss than the disk filter with regular triangular one.