• Title/Summary/Keyword: survival signaling

Search Result 345, Processing Time 0.03 seconds

Reconstruction and Exploratory Analysis of mTORC1 Signaling Pathway and Its Applications to Various Diseases Using Network-Based Approach

  • Buddham, Richa;Chauhan, Sweety;Narad, Priyanka;Mathur, Puniti
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.365-377
    • /
    • 2022
  • Mammalian target of rapamycin (mTOR) is a serine-threonine kinase member of the cellular phosphatidylinositol 3-kinase (PI3K) pathway, which is involved in multiple biological functions by transcriptional and translational control. mTOR is a downstream mediator in the PI3K/Akt signaling pathway and plays a critical role in cell survival. In cancer, this pathway can be activated by membrane receptors, including the HER (or ErbB) family of growth factor receptors, the insulin-like growth factor receptor, and the estrogen receptor. In the present work, we congregated an electronic network of mTORC1 built on an assembly of data using natural language processing, consisting of 470 edges (activations/interactions and/or inhibitions) and 206 nodes representing genes/proteins, using the Cytoscape 3.6.0 editor and its plugins for analysis. The experimental design included the extraction of gene expression data related to five distinct types of cancers, namely, pancreatic ductal adenocarcinoma, hepatic cirrhosis, cervical cancer, glioblastoma, and anaplastic thyroid cancer from Gene Expression Omnibus (NCBI GEO) followed by pre-processing and normalization of the data using R & Bioconductor. ExprEssence plugin was used for network condensation to identify differentially expressed genes across the gene expression samples. Gene Ontology (GO) analysis was performed to find out the over-represented GO terms in the network. In addition, pathway enrichment and functional module analysis of the protein-protein interaction (PPI) network were also conducted. Our results indicated NOTCH1, NOTCH3, FLCN, SOD1, SOD2, NF1, and TLR4 as upregulated proteins in different cancer types highlighting their role in cancer progression. The MCODE analysis identified gene clusters for each cancer type with MYC, PCNA, PARP1, IDH1, FGF10, PTEN, and CCND1 as hub genes with high connectivity. MYC for cervical cancer, IDH1 for hepatic cirrhosis, MGMT for glioblastoma and CCND1 for anaplastic thyroid cancer were identified as genes with prognostic importance using survival analysis.

IL-17A and Th17 Cells Contribute to Endometrial Cell Survival by Inhibiting Apoptosis and NK Cell Mediated Cytotoxicity of Endometrial Cells via ERK1/2 Pathway

  • Young-Ju Kang;Hee Jun Cho;Yunhee Lee;Arum Park;Mi Jeong Kim;In Cheul Jeung;Yong-Wook Jung;Haiyoung Jung;Inpyo Choi;Hee Gu Lee;Suk Ran Yoon
    • IMMUNE NETWORK
    • /
    • v.23 no.2
    • /
    • pp.14.1-14.14
    • /
    • 2023
  • Immune status including the immune cells and cytokine profiles has been implicated in the development of endometriosis. In this study, we analyzed Th17 cells and IL-17A in peritoneal fluid (PF) and endometrial tissues of patients with (n=10) and without (n=26) endometriosis. Our study has shown increased Th17 cell population and IL-17A level in PF with endometriosis patients. To determine the roles of IL-17A and Th17 cells in the development of endometriosis, the effect of IL-17A, major cytokine of Th17, on endometrial cells isolated from endometriotic tissues was examined. Recombinant IL-17A promoted survival of endometrial cells accompanied by increased expression of anti-apoptotic genes, including Bcl-2 and MCL1, and the activation of ERK1/2 signaling. In addition, treatment of IL-17A to endometrial cells inhibited NK cell mediated cytotoxicity and induced HLA-G expression on endometrial cells. IL-17A also promoted migration of endometrial cells. Our data suggest that Th17 cells and IL-17A play critical roles in the development of endometriosis by promoting endometrial cell survival and conferring a resistance to NK cell cytotoxicity through the activation of ERK1/2 signaling. Targeting IL-17A has potential as a new strategy for the treatment of endometriosis.

Loss of Expression of PTEN is Associated with Worse Prognosis in Patients with Cancer

  • Qiu, Zhi-Xin;Zhao, Shuang;Li, Lei;Li, Wei-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.11
    • /
    • pp.4691-4698
    • /
    • 2015
  • Background: The tumor suppressor phosphatase and tensin homolog (PTEN) is an important negative regulator of cell-survival signaling. However, available results for the prognostic value of PTEN expression in patients with cancer remain controversial. Therefore, a meta-analysis of published studies investigating this issue was performed. Materials and Methods: A literature search via PubMed and EMBASE databases was conducted. Statistical analysis was performed by using the STATA 12.0 (STATA Corp., College, TX). Data from eligible studies were extracted and included into the meta-analysis using a random effects model. Results: A total of 3,810 patients from 27 studies were included in the meta-analysis, 22 investigating the relationship between PTEN expression and overall survival (OS) using univariate analysis, and nine with multivariate analysis. The pooled hazard ratio (HR) for OS was 1.64 (95% confidence interval (CI): 1.32-2.05) by univariate analysis and 1.56 (95% CI: 1.20-2.03) by multivariate analysis. In addition, eight papers including two disease-free-survival analyses (DFSs), four relapse-free-survival analyses (RFSs), three progression-free-survival analyses (PFSs) and one metastasis-free-survival analysis (MFS) reported the effect of PTEN on survival. The results showed that loss of PTEN expression was significant correlated with poor prognosis, with a combined HR of 1.74 (95% CI: 1.24-2.44). Furthermore, in the stratified analysis by the year of publication, ethnicity, cancer type, method, cut-off value, median follow-up time and neoadjuvant therapy in which the study was conducted, we found that the ethnicity, cancer type, method, median follow-up time and neoadjuvant therapy are associated with prognosis. Conclusions: Our study shows that negative or loss of expression of PTEN is associated with worse prognosis in patients with cancer. However, adequately designed prospective studies need to be performed for confirmation.

An Ototoxic Antibiotic Gentamicin Can Increase PKA-caveolin-1 Signaling Pathway in Differentiated Vestibular Cell Line (UB/UE-1)

  • Kim, Kyu-Sung;Cho, Byung-Han;Choi, Ho-Seok;Park, Chang-Shin;Jung, Yoon-Gun;Kim, Young-Mo;Jang, Tae-Young
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.3
    • /
    • pp.177-182
    • /
    • 2008
  • Caveolin proteins are mediators of cell death or the survival of injured cells, and they are inhibitors of various signaling pathways. The expression of caveolin-, which is involved in the protein kinase A (PKA) signaling pathway, was examined in the differentiated mouse vestibular cell line UB/UE-1 after gentamicin ototoxicity. Caveolae in the vestibular hair cell of healthy guinea pigs were observed through an electron microscope. UB/UE-1 cells were cultured at 95% $CO_2$ with 5% $O_2$ at $33^{\circ}C$ for 48 hours and at 95% $CO_2$ with 5% $O_2$ at $39^{\circ}C$ for 24 hours for differentiation. Cells were treated with 1 mM gentamicin, 0.02 mM H89 (PKA inhibitor), and then incubated for 24 hours. Caveolin-1 expression was examined by western blotting and PKA activity by a $PepTag^{(R)}$ assay. Caveolae were observed in the vestibular hair cells of healthy guinea pigs by electron microscopy. Caveolin-1 was expressed spontaneously in differentiated UB/UE-1 cells and increased after gentamicin treatment. PKA was also over-activated by gentamicin treatment. Both gentamicin-induced caveolin-1 expression and PKA over-activation were inhibited by H89. These results indicate that gentamicin-induced caveolin-1 expression is mediated by the PKA signaling pathway. We conclude that caveolae/ caveolin activity, induced via a PKA signaling pathway, may be one of the mechanisms of gentamicin-induced ototoxicity.

Proliferative and Synthetic Responses of Airway Smooth Muscle in Asthma (천식에서 기도평활근의 증식과 합성 반응에 대한 최신지견)

  • Shim, Jung Yeon
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.6
    • /
    • pp.580-587
    • /
    • 2005
  • New evidence is emerging that airway smooth muscle(ASM) may act as an immunomodulatory cell by providing pro-inflammatory cytokines and chemokines, polypeptide growth factors, extracellular matrix proteins, cell adhesion receptors and co-stimulatory molecules. ASM can promote the formation of the interstitial extracellular matrix, and potentially contribute to the alterations within the extracellular matrix in asthma. In addition, extracellular matrix components can alter the proliferative, survival, and cytoskeletal synthetic function of ASM cells through integrin-directed signaling. Increased ASM mass is one of the most important features of the airway wall remodeling process in asthma. Three different mechanisms may contribute to the increased ASM mass : cell proliferation, increased migration and decreased rate of apoptosis. The major signaling pathways of cell proliferation activated by ASM mitogens are those dependent on extracellular signal-regulated kinase and phosphoinositide 3'-kinase. The key signaling mechanisms of cell migration have been identified as the p38 mitogen-activated protein kinase and the p21-activated kinase 1 pathways. ASM cells contain ${\beta}2$-adrenergic receptors and glucocorticoid receptors. They may represent a key target for ${\beta}2$-adrenergic receptor agonist/corticosteroid interactions which have antiproliferative activity against a broad spectrum of mitogens.

Mitochondrial metabolism in cancer stem cells: a therapeutic target for colon cancer

  • Song, In-Sung;Jeong, Yu Jeong;Han, Jin
    • BMB Reports
    • /
    • v.48 no.10
    • /
    • pp.539-540
    • /
    • 2015
  • It has been proposed that the selective elimination of cancer stem cells (CSCs) using targeted therapy could greatly reduce tumor growth, recurrence, and metastasis. To develop effective therapeutic targets for CSC elimination, we aimed to define the properties of CSC mitochondria, and identify CSC-mitochondria-specific targets in colon cancer. We found that colon CSCs utilize mitochondrial oxidative phosphorylation (OXPHOS) to produce ATP. We also found that forkhead box protein 1 (FOXM1)-induced peroxiredoxin 3 (PRDX3) maintains the mitochondrial function, and the FOXM1/PRDX3 mitochondrial pathway maintains survival of colon CSCs. Furthermore, FOXM1 induces CD133 (PROM1/prominin 1) expression, which maintains the stemness of colon CSCs. Together, our findings indicate that FOXM1, PRDX3, and CD133 are potential therapeutic targets for the elimination of CSCs in colon cancer.

Global Proteomic Analysis of Mesenchymal Stem Cells Derived from Human Embryonic Stem Cells via Connective Tissue Growth Factor Treatment under Chemically Defined Feeder-Free Culture Conditions

  • Seo, Ji-Hye;Jeon, Young-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.126-140
    • /
    • 2022
  • Stem cells can be applied usefully in basic research and clinical field due to their differentiation and self-renewal capacity. The aim of this study was to establish an effective novel therapeutic cellular source and create its molecular expression profile map to elucidate the possible therapeutic mechanism and signaling pathway. We successfully obtained a mesenchymal stem cell population from human embryonic stem cells (hESCs) cultured on chemically defined feeder-free conditions and treated with connective tissue growth factor (CTGF) and performed the expressive proteomic approach to elucidate the molecular basis. We further selected 12 differentially expressed proteins in CTGF-induced hESC-derived mesenchymal stem cells (C-hESC-MSCs), which were found to be involved in the metabolic process, immune response, cell signaling, and cell proliferation, as compared to bone marrow derived-MSCs(BM-MSCs). Moreover, these up-regulated proteins were potentially related to the Wnt/β-catenin pathway. These results suggest that C-hESC-MSCs are a highly proliferative cell population, which can interact with the Wnt/β-catenin signaling pathway; thus, due to the upregulated cell survival ability or downregulated apoptosis effects of C-hESC-MSCs, these can be used as an unlimited cellular source in the cell therapy field for a higher therapeutic potential. Overall, the study provided valuable insights into the molecular functioning of hESC derivatives as a valuable cellular source.

Protective Effects of a Novel Lactobacillus brevis Strain with Probiotic Characteristics against Staphylococcus aureus Lipoteichoic Acid-Induced Intestinal Inflammatory Response

  • Kim, Won-Ju;Hyun, Jun-Hyun;Lee, Na-Kyoung;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.205-211
    • /
    • 2022
  • Probiotics can effectively modulate host immune responses and prevent gastrointestinal diseases. The objective of this study was to investigate the probiotic characteristics of Lactobacillus brevis KU15152 isolated from kimchi and its protective potential against intestinal inflammation induced by Staphylococcus aureus lipoteichoic acid (aLTA). L. brevis KU15152 exhibited a high survival rate in artificial gastric and bile environments. Additionally, the adhesion capability of the strain to HT-29 cells was higher than that of L. rhamnosus GG. L. brevis KU15152 did not produce harmful enzymes, such as β-glucuronidase, indicating that it could be used as a potential probiotic. The anti-inflammatory potential of L. brevis KU15152 was determined in HT-29 cells. Treatment with L. brevis KU15152 suppressed the production of interleukin-8 without inducing significant cytotoxicity. The downregulatory effects of L. brevis KU15152 were involved in the suppression of nuclear factor-kappa B activation mediated by the extracellular signal-regulated kinase and Akt signaling pathways. Collectively, these data suggest that L. brevis KU15152 can be used in developing therapeutic and prophylactic products to manage and treat aLTA-induced intestinal damage.

GBA inhibition suppresses ovarian cancer growth, survival and receptor tyrosine kinase AXL-mediated signaling pathways

  • Gang Wang;Baisha Ouyang;Fang Jing;Xiaoyan Dai
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.21-29
    • /
    • 2023
  • The poor outcome of advanced ovarian cancer under conventional therapy necessitates new strategies to improve therapeutic efficacy. β-glucosidase (encoded by GBA) is a lysosomal enzyme and is involved in sphingolipids metabolism. Recent studies revealed that β-glucosidase plays a role in cancer development and chemoresistance. In this work, we systematically evaluated the expression and role of GBA in ovarian cancer. Our work demonstrates that inhibition of β-glucosidase has therapeutic potential for ovarian cancer. Gene Expression Profiling Interactive Analysis database, western blot and immunohistochemistry analyses of patient samples demonstrated that GBA mRNA and protein expression levels were significantly increased in ovarian cancer compared to normal tissues. Functional studies using gainof-function and loss-of-function approaches demonstrated that GBA overexpression did not affect growth and migration but alleviated cisplatin's efficacy in ovarian cancer cells. In addition, GBA depletion resulted in growth inhibition, apoptosis induction, and enhancement of cisplatin's efficacy. Of note, we found that GBA inhibition specifically decreased receptor tyrosine kinase AXL level, leading to the suppression of AXL-mediated signaling pathways. Our data suggest that GBA represents a promising target to inhibit AXL signaling and overcome cisplatin resistance in ovarian cancer.

Regulation of BDNF release in dopaminergic neurons

  • Jeon, Hong-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.743-746
    • /
    • 2003
  • The major pathological lesion in Parkinson's disease(PD) is selective degeneration and loss of pigmented dopaminergic neurons in substantia nigra (SN). Although the initial cause and subsequent molecular signaling mechanisms leading to the dopaminergic cell death underlying the PD process is elusive, the potent neurotrophic factors (NTFs), brain derived neurotrophic factor (BDNF) and glial cell line derived neurotrophic factor (GDNF), are known to exert dopaminergic neuroprotection both in vivo and in vitro models of PD employing the neurotoxin, MPTP. BDNF and its receptor, trkB are expressed in SN dopaminergic neurons and their innervation target. Thus, neurotrophins may have autocrine, paracrine and retrograde transport effects on the SN dopaminergic neurons. This study determined the BDNF secretion from SN dopaminergic neurons by ELISA. Regulation of BDNF synthesis/release and changes in signaling pathways are monitored in the presence of free radical donor, NO donor and mitochondrial inhibitors. Also, this study shows that BDNF is able to promote survival and phenotypic differentiation of SN dopaminergic neurons in culture and protect them against MPTP-induced neurotoxicity via MAP kinase pathway.

  • PDF