DOI QR코드

DOI QR Code

IL-17A and Th17 Cells Contribute to Endometrial Cell Survival by Inhibiting Apoptosis and NK Cell Mediated Cytotoxicity of Endometrial Cells via ERK1/2 Pathway

  • Young-Ju Kang (Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Hee Jun Cho (Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Yunhee Lee (Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Arum Park (Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Mi Jeong Kim (Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • In Cheul Jeung (Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea) ;
  • Yong-Wook Jung (Department of Obstetrics and Gynecology, CHA Gangnam Medical Center) ;
  • Haiyoung Jung (Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Inpyo Choi (Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Hee Gu Lee (Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Suk Ran Yoon (Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2021.12.29
  • Accepted : 2022.12.12
  • Published : 2023.04.30

Abstract

Immune status including the immune cells and cytokine profiles has been implicated in the development of endometriosis. In this study, we analyzed Th17 cells and IL-17A in peritoneal fluid (PF) and endometrial tissues of patients with (n=10) and without (n=26) endometriosis. Our study has shown increased Th17 cell population and IL-17A level in PF with endometriosis patients. To determine the roles of IL-17A and Th17 cells in the development of endometriosis, the effect of IL-17A, major cytokine of Th17, on endometrial cells isolated from endometriotic tissues was examined. Recombinant IL-17A promoted survival of endometrial cells accompanied by increased expression of anti-apoptotic genes, including Bcl-2 and MCL1, and the activation of ERK1/2 signaling. In addition, treatment of IL-17A to endometrial cells inhibited NK cell mediated cytotoxicity and induced HLA-G expression on endometrial cells. IL-17A also promoted migration of endometrial cells. Our data suggest that Th17 cells and IL-17A play critical roles in the development of endometriosis by promoting endometrial cell survival and conferring a resistance to NK cell cytotoxicity through the activation of ERK1/2 signaling. Targeting IL-17A has potential as a new strategy for the treatment of endometriosis.

Keywords

Acknowledgement

We would like to thank Jung-Hyeon Choi (Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology [KRIBB]) for technical assistance with immunohistochemistry. This work was supported by grants from the grant of National Research Foundation of Korea (NRF) (2019R1A2C1007906) and KRIBB Research Initiative Program from the Korea government.

References

  1. Bulun SE, Utsunomiya H, Lin Z, Yin P, Cheng YH, Pavone ME, Tokunaga H, Trukhacheva E, Attar E, Gurates B, et al. Steroidogenic factor-1 and endometriosis. Mol Cell Endocrinol 2009;300:104-108.  https://doi.org/10.1016/j.mce.2008.12.012
  2. Ho HN, Wu MY, Yang YS. Peritoneal cellular immunity and endometriosis. Am J Reprod Immunol 1997;38:400-412.  https://doi.org/10.1111/j.1600-0897.1997.tb00319.x
  3. Kyama CM, Debrock S, Mwenda JM, D'Hooghe TM. Potential involvement of the immune system in the development of endometriosis. Reprod Biol Endocrinol 2003;1:123. 
  4. Berbic M, Fraser IS. Regulatory T cells and other leukocytes in the pathogenesis of endometriosis. J Reprod Immunol 2011;88:149-155.  https://doi.org/10.1016/j.jri.2010.11.004
  5. Osuga Y, Koga K, Hirota Y, Hirata T, Yoshino O, Taketani Y. Lymphocytes in endometriosis. Am J Reprod Immunol 2011;65:1-10.  https://doi.org/10.1111/j.1600-0897.2011.01014.x
  6. D'Hooghe TM, Debrock S, Hill JA, Meuleman C. Endometriosis and subfertility: Is the relationship resolved? Semin Reprod Med 2003;21:243-254.  https://doi.org/10.1055/s-2003-41330
  7. Khan KN, Kitajima M, Hiraki K, Fujishita A, Sekine I, Ishimaru T, Masuzaki H. Immunopathogenesis of pelvic endometriosis: role of hepatocyte growth factor, macrophages and ovarian steroids. Am J Reprod Immunol 2008;60:383-404.  https://doi.org/10.1111/j.1600-0897.2008.00643.x
  8. Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM. Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 2006;24:677-688.  https://doi.org/10.1016/j.immuni.2006.06.002
  9. Miossec P, Korn T, Kuchroo VK. Interleukin-17 and type 17 helper T cells. N Engl J Med 2009;361:888-898.  https://doi.org/10.1056/NEJMra0707449
  10. Wilke CM, Bishop K, Fox D, Zou W. Deciphering the role of Th17 cells in human disease. Trends Immunol 2011;32:603-611.  https://doi.org/10.1016/j.it.2011.08.003
  11. Qi W, Huang X, Wang J. Correlation between Th17 cells and tumor microenvironment. Cell Immunol 2013;285:18-22.  https://doi.org/10.1016/j.cellimm.2013.06.001
  12. Kryczek I, Wu K, Zhao E, Wei S, Vatan L, Szeliga W, Huang E, Greenson J, Chang A, Rolinski J, et al. IL-17+  regulatory T cells in the microenvironments of chronic inflammation and cancer. J Immunol 2011;186:4388-4395.  https://doi.org/10.4049/jimmunol.1003251
  13. Chung Y, Chang SH, Martinez GJ, Yang XO, Nurieva R, Kang HS, Ma L, Watowich SS, Jetten AM, Tian Q, et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 2009;30:576-587.  https://doi.org/10.1016/j.immuni.2009.02.007
  14. Zhang X, Xu H, Lin J, Qian Y, Deng L. Peritoneal fluid concentrations of interleukin-17 correlate with the severity of endometriosis and infertility of this disorder. BJOG 2005;112:1153-1155.  https://doi.org/10.1111/j.1471-0528.2005.00639.x
  15. Hirata T, Osuga Y, Hamasaki K, Yoshino O, Ito M, Hasegawa A, Takemura Y, Hirota Y, Nose E, Morimoto C, et al. Interleukin (IL)-17A stimulates IL-8 secretion, cyclooxygensase-2 expression, and cell proliferation of endometriotic stromal cells. Endocrinology 2008;149:1260-1267.  https://doi.org/10.1210/en.2007-0749
  16. Velasco I, Acien P, Campos A, Acien MI, Ruiz-Macia E. Interleukin-6 and other soluble factors in peritoneal fluid and endometriomas and their relation to pain and aromatase expression. J Reprod Immunol 2010;84:199-205.  https://doi.org/10.1016/j.jri.2009.11.004
  17. Ahn SH, Edwards AK, Singh SS, Young SL, Lessey BA, Tayade C. IL-17A contributes to the pathogenesis of endometriosis by triggering proinflammatory cytokines and angiogenic growth factors. J Immunol 2015;195:2591-2600. https://doi.org/10.4049/jimmunol.1501138
  18. Hirota Y, Osuga Y, Hirata T, Harada M, Morimoto C, Yoshino O, Koga K, Yano T, Tsutsumi O, Taketani Y. Activation of protease-activated receptor 2 stimulates proliferation and interleukin (IL)-6 and IL-8 secretion of endometriotic stromal cells. Hum Reprod 2005;20:3547-3553.  https://doi.org/10.1093/humrep/dei255
  19. Hirota Y, Osuga Y, Hirata T, Yoshino O, Koga K, Harada M, Morimoto C, Nose E, Yano T, Tsutsumi O, et al. Possible involvement of thrombin/protease-activated receptor 1 system in the pathogenesis of endometriosis. J Clin Endocrinol Metab 2005;90:3673-3679.  https://doi.org/10.1210/jc.2004-0493
  20. Park A, Lee Y, Kim MS, Kang YJ, Park YJ, Jung H, Kim TD, Lee HG, Choi I, Yoon SR. Prostaglandin E2 secreted by thyroid cancer cells contributes to immune escape through the suppression of natural killer (NK) cell cytotoxicity and NK cell differentiation. Front Immunol 2018;9:1859. 
  21. Kang YJ, Jeung IC, Park A, Park YJ, Jung H, Kim TD, Lee HG, Choi I, Yoon SR. An increased level of IL-6 suppresses NK cell activity in peritoneal fluid of patients with endometriosis via regulation of SHP-2 expression. Hum Reprod 2014;29:2176-2189.  https://doi.org/10.1093/humrep/deu172
  22. Kryczek I, Wei S, Vatan L, Escara-Wilke J, Szeliga W, Keller ET, Zou W. Cutting edge: opposite effects of IL-1 and IL-2 on the regulation of IL-17+ T cell pool IL-1 subverts IL-2-mediated suppression. J Immunol 2007;179:1423-1426.  https://doi.org/10.4049/jimmunol.179.3.1423
  23. Kryczek I, Wei S, Szeliga W, Vatan L, Zou W. Endogenous IL-17 contributes to reduced tumor growth and metastasis. Blood 2009;114:357-359.  https://doi.org/10.1182/blood-2008-09-177360
  24. Gu FM, Li QL, Gao Q, Jiang JH, Zhu K, Huang XY, Pan JF, Yan J, Hu JH, Wang Z, et al. IL-17 induces AKT-dependent IL-6/JAK2/STAT3 activation and tumor progression in hepatocellular carcinoma. Mol Cancer 2011;10:150.  https://doi.org/10.1186/1476-4598-10-150
  25. Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, Taniguchi K, Yu GY, Osterreicher CH, Hung KE, et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 2012;491:254-258.  https://doi.org/10.1038/nature11465
  26. Kinugasa T, Sakaguchi T, Gu X, Reinecker HC. Claudins regulate the intestinal barrier in response to immune mediators. Gastroenterology 2000;118:1001-1011.  https://doi.org/10.1016/S0016-5085(00)70351-9
  27. Li Q, Han Y, Fei G, Guo Z, Ren T, Liu Z. IL-17 promoted metastasis of non-small-cell lung cancer cells. Immunol Lett 2012;148:144-150.  https://doi.org/10.1016/j.imlet.2012.10.011
  28. Kalluri R. EMT: when epithelial cells decide to become mesenchymal-like cells. J Clin Invest 2009;119:1417-1419.  https://doi.org/10.1172/JCI39675
  29. Au HK, Chang JH, Wu YC, Kuo YC, Chen YH, Lee WC, Chang TS, Lan PC, Kuo HC, Lee KL, et al. TGF-βI regulates cell migration through pluripotent transcription factor OCT4 in endometriosis. PLoS One 2015;10:e0145256.  https://doi.org/10.1371/journal.pone.0145256
  30. Wieser F, Fabjani G, Tempfer C, Schneeberger C, Zeillinger R, Huber JC, Wenzl R. Tumor necrosis factor-alpha promotor polymorphisms and endometriosis. J Soc Gynecol Investig 2002;9:313-318.  https://doi.org/10.1177/107155760200900510
  31. Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D, Yu H. IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J Exp Med 2009;206:1457-1464.  https://doi.org/10.1084/jem.20090207
  32. Xu L, Kitani A, Fuss I, Strober W. Cutting edge: regulatory T cells induce CD4+CD25-Foxp3- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-β. J Immunol 2007;178:6725-6729.  https://doi.org/10.4049/jimmunol.178.11.6725
  33. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005;6:1133-1141.  https://doi.org/10.1038/ni1261
  34. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006;441:235-238. https://doi.org/10.1038/nature04753
  35. Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT. Transforming growth factor-beta induces development of the TH17 lineage. Nature 2006;441:231-234.  https://doi.org/10.1038/nature04754
  36. Rizzo R, Lo Monte G, Bortolotti D, Graziano A, Gentili V, Di Luca D, Marci R. Impact of soluble HLA-G levels and endometrial NK cells in uterine flushing samples from primary and secondary unexplained infertile women. Int J Mol Sci 2015;16:5510-5516.  https://doi.org/10.3390/ijms16035510
  37. Chen YJ, Li HY, Huang CH, Twu NF, Yen MS, Wang PH, Chou TY, Liu YN, Chao KC, Yang MH. Oestrogen-induced epithelial-mesenchymal transition of endometrial epithelial cells contributes to the development of adenomyosis. J Pathol 2010;222:261-270. https://doi.org/10.1002/path.2761