• 제목/요약/키워드: survey astronomy

검색결과 693건 처리시간 0.027초

DUST PRODUCTION BY EVOLVED STARS IN THE MAGELLANIC CLOUDS

  • KEMPER, F.
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.283-287
    • /
    • 2015
  • Within the context of the hugely successful SAGE-LMC and SAGE-SMC surveys, Spitzer photometry observations of the Large and Small Magellanic Clouds have revealed millions of infrared point sources in each galaxy. The brightest infrared sources are generally dust producing and mass-losing evolved stars, and several tens of thousands of such stars have been classified. After photometrically classifying these objects, the dust production by several kinds of evolved stars - such as Asymptotic Giant Branch stars and Red Supergiants - can be determined. SAGE-Spec is the spectroscopic follow-up to the SAGE-LMC survey, and it has obtained Spitzer-IRS $5-40{\mu}m$ spectroscopy of about 200 sources in the LMC. Combined with archival data from other programs, observations at a total of ~1000 pointings have been obtained in the LMC, while ~250 IRS pointings were observed in the SMC. Of these, a few hundred pointings represent dust producing and mass-losing evolved stars, covering a range in colors, luminosities, and thus mass-loss rates. Red Supergiants and O-rich and C-rich AGB stars - the main dust producers - are well represented in the spectroscopic sample. This paper will summarize what we know about the mineralogy of dust producing evolved stars, and discuss their relative importance in the total dust budget.

Chandra Archival Survey of Galaxy Clusters: Surface Photometry of Diffuse X-ray Emission

  • 김은혁;김민선
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.77.2-77.2
    • /
    • 2012
  • We have studied the physical properties of X-ray point sources in galaxy clusters for years based on the archival observations using the most sophisticated space X-ray observatory, Chandra X-ray Observatory. Because the ultimate goal of the study is comparing the physical properties of X-ray point sources found in galaxy clusters to those in X-ray blank fields; blank fields are the regions in the sky where any noticeable cosmic diffuse X-ray emission is not observed, an important key issue regarding this study is picking out the point sources related with galaxy clusters. However we do not have red-shift information of all the X-ray point sources. Therefore as a first order approximation we will consider the point sources with smaller projected cluster-centric distance than the adopted size of galaxy clusters. As a first step of this study we perform X-ray surface photometry of ~600 galaxy clusters based on ~800 Chandra ACIS observations. We carefully investigate the radial structures of diffuse X-ray emission in 3 different energy bands. Based on the highly accurate surface photometry we determine the characteristic size of diffuse X-ray emission (i.e., the boundary of X-ray emission). We also investigate the cosmological evolution of this characteristic size of galaxy clusters. General discussion regarding the two dimensional morphology of galaxy clusters will be presented.

  • PDF

Chandra Archival Survey of Galaxy Clusters: X-ray Point Sources in Cool-core and Non-cool-core Clusters

  • 김민선;김은혁
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.78.1-78.1
    • /
    • 2012
  • We have studied the physical properties of X-ray point sources in galaxy clusters using ~600 Chandra archival observations. The goal of this study is to investigate the density environmental effects on the physical properties of X-ray point sources by comparing the properties of X-ray point sources in galaxy clusters to those in typical blank fields. In this presentation, we show the nature of X-ray point sources which are expected to be related with galaxy clusters with different core properties. Using ~60 galaxy clusters observed with Chandra, we investigate the physical properties of X-ray point sources in cool-core and non-cool-core clusters. The cool-core clusters are known to have short central cooling time, and are characterized by low central entropy, systematic central temperature drops, and a brightest cluster galaxy at the X-ray peak. While the non-cool-core clusters have longer central cooling time, and are characterized by large central entropies and flat or centrally rising temperature profile. We show that how central core properties of galaxy clusters affect on the physical properties of X-ray point sources.

  • PDF

Globular Cluster Systems of Early-type Galaxies in Low-density Environments

  • Cho, Jae-Il;Sharples, Ray
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2010년도 한국우주과학회보 제19권1호
    • /
    • pp.34.4-34.4
    • /
    • 2010
  • We present the properties of globular cluster systems for 10 early-type galaxies in low density environments obtained using deep images from the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST). Using the ACS Virgo Cluster Survey as a counterpart in high-density environments, we investigate the role of environment in determining the properties of their globular cluster systems. We detect a strong colour bimodality of globular cluster systems in half of our galaxy sample. It is found that there is a strong correlation between the colour and richness of globular cluster populations and their host galaxy luminosities: the less bright galaxies possess bluer and fewer globular clusters as also seen in rich cluster environments. However, the mean colour of globular clusters in our field sample are slightly bluer than those in cluster environments at a given galaxy luminosity, and the colour of the red population has a steeper slope with absolute luminosity. By employing the YEPS simple stellar population model, the colour offset corresponds to metallicity difference of $\Delta$[F e/H ] ~ 0.15 - 1.20 or an age difference of $\Delta$age ~ 2 Gyr on average, implying that GCs in field galaxies appear to be either less metal-rich or younger than those in cluster galaxies. Although we have found that galaxy environment has a subtle effect on the formation and metal enrichment of GC systems, host galaxy mass is the primary factor that determines the stellar populations of GCs and the galaxy itself.

  • PDF

Detection of Intrinsic Spin Alignments in Isolated Spiral Pairs

  • Koo, Hanwool;Lee, Jounghun
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.79.3-79.3
    • /
    • 2019
  • Observational evidence for intrinsic galaxy alignments in isolated spiral pairs is presented. From the catalog of the galaxy groups identified by Tempel et al. in the flux-limited galaxy sample of the Sloan Digital Sky Survey Data Release 10, we select those groups consisting only of two spiral galaxies as isolated spiral pairs and investigate if and how strongly the spin axes of their two spiral members are aligned with each other. We detect a clear signal of intrinsic spin alignment in isolated spiral pairs, which leads to the rejection of the null hypothesis at the 99.9999% confidence level via the Rayleigh test. It is also found that those isolated pairs comprising two early-type spiral galaxies exhibit the strongest signal of intrinsic spin alignment and that the strength of the alignment signal depends on the angular separation distance as well as on the luminosity ratio of the member galaxies. Using the dark matter halos consisting of only two subhalos resolved in the EAGLE hydrodynamic simulations, we repeat the same analysis but fail to find any alignment tendency between the spin angular momentum vectors of the stellar components of the subhalos, which is in tension with the observational result. Several possible sources of this apparent inconsistency between the observational and the numerical results are discussed.

  • PDF

Detection of Intrinsic Spin Alignments in Isolated Spiral Pairs

  • Koo, Hanwool;Lee, Jounghun
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.35.2-35.2
    • /
    • 2019
  • Observational evidence for intrinsic galaxy alignments in isolated spiral pairs is presented. From the catalog of the galaxy groups identified by Tempel et al. in the flux-limited galaxy sample of the Sloan Digital Sky Survey Data Release 10, we select those groups consisting only of two spiral galaxies as isolated spiral pairs and investigate if and how strongly the spin axes of their two spiral members are aligned with each other. We detect a clear signal of intrinsic spin alignment in isolated spiral pairs, which leads to the rejection of the null hypothesis at the 99.9999% confidence level via the Rayleigh test. It is also found that those isolated pairs comprising two early-type spiral galaxies exhibit the strongest signal of intrinsic spin alignment and that the strength of the alignment signal depends on the angular separation distance as well as on the luminosity ratio of the member galaxies. Using the dark matter halos consisting of only two subhalos resolved in the EAGLE hydrodynamic simulations, we repeat the same analysis but fail to find any alignment tendency between the spin angular momentum vectors of the stellar components of the subhalos, which is in tension with the observational result. Several possible sources of this apparent inconsistency between the observational and the numerical results are discussed.

  • PDF

Spiral Arm Features in Disk Galaxies: A Density-Wave Theory

  • Kim, Yonghwi;Ho, Luis C.
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.34.2-34.2
    • /
    • 2019
  • Several observational results show a tighter pitch angle at wavelengths of optical and near-infrared than those that are associated with star formation, which is in agreement with the prediction of the density wave theory. In my recent numerical studies, the dependence of the shock positions relative to the potential minima is due to the tendency that stronger shocks form farther downstream. This causes a systematic variation of the perpendicular Mach number, with radius and makes the pitch angle of the gaseous arms smaller than that of the stellar arms, which supports the prediction of the density-wave theory, independently. However, some observations still give controversial results which show similar pitch angles at wavelengths, and there is no statistical study comparing observations and numerical models directly. By analyzing optical image of disk galaxies in the Carnegie-Irvine Galaxy Survey (CGS), I measured the physical values of stellar and gaseous arms such as their strength, length, and pitch angles. For direct comparison with numerical results, I analyzed more than 30 additional numerical models with varying the initial parameters in model galaxies. In this talk, I will present results both of observational and numerical samples and discuss the physical properties of spiral structures based on the density-wave theory.

  • PDF

A Brief Introduction of Current and Future Magnetospheric Missions

  • Yukinaga Miyashita
    • 우주기술과 응용
    • /
    • 제3권1호
    • /
    • pp.1-25
    • /
    • 2023
  • In this paper, I briefly introduce recently terminated, current, and future scientific spacecraft missions for in situ and remote-sensing observations of Earth's and other planetary magnetospheres as of February 2023. The spacecraft introduced here are Geotail, Cluster, Time History of Events and Macroscale Interactions during Substorms / Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (THEMIS / ARTEMIS), Magnetospheric Multiscale (MMS), Exploration of energization and Radiation in Geospace (ERG), Cusp Plasma Imaging Detector (CuPID), and EQUilibriUm Lunar-Earth point 6U Spacecraft (EQUULEUS) for recently terminated or currently operated missions for Earth's magnetosphere; Lunar Environment Heliospheric X-ray Imager (LEXI), Gateway, Solar wind Magneto-sphere Ionosphere Link Explorer (SMILE), HelioSwarm, Solar-Terrestrial Observer for the Response of the Magnetosphere (STORM), Geostationary Transfer Orbit Satellite (GTOSat), GEOspace X-ray imager (GEO-X), Plasma Observatory, Magnetospheric Constellation (MagCon), self-Adaptive Magnetic reconnection Explorer (AME), and COnstellation of Radiation BElt Survey (CORBES) approved for launch or proposed for future missions for Earth's magnetosphere; BepiColombo for Mercury and Juno for Jupiter for current missions for planetary magnetospheres; Jupiter Icy Moons Explorer (JUICE) and Europa Clipper for Jupiter, Uranus Orbiter and Probe (UOP) for Uranus, and Neptune Odyssey for Neptune approved for launch or proposed for future missions for planetary magnetospheres. I discuss the recent trend and future direction of spacecraft missions as well as remaining challenges in magnetospheric research. I hope this paper will be a handy guide to the current status and trend of magnetospheric missions.

The Relative Role of Bars and Galaxy Environments in AGN Triggering of SDSS Spirals

  • Choi, Yun-Young;Kim, Minbae
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.31.3-32
    • /
    • 2021
  • We quantify the relative role of galaxy environment and bar presence on AGN triggering in face-on spiral galaxies using a volume-limited sample with 0.02 < z < 0.055, Mr < 19.5, and σ > 70 km s-1 selected from Sloan Digital Sky Survey (SDSS) Data Release 7. To separate their possible entangled effects, we divide the sample into bar and non-bar samples, and each sample is further divided into three environment cases of isolated galaxies, interacting galaxies with a pair, and cluster galaxies. The isolated case is used as a control sample. For these six cases, we measure AGN fractions at a fixed central star formation rate and central velocity dispersion, σ. We demonstrate that the internal process of the bar-induced gas inflow is more efficient in AGN triggering than the external mechanism of the galaxy interactions in groups and cluster outskirts. The significant effects of bar instability and galaxy environments are found in galaxies with a relatively less massive bulge. We conclude that from the perspective of AGN-galaxy coevolution, a massive black hole is one of the key drivers of spiral galaxy evolution. If it is not met, a bar instability helps the evolution, and in the absence of bars, galaxy interactions/mergers become important. In other words, in the presence of a massive central engine, the role of the two gas inflow mechanisms is reduced or almost disappears. We also find that bars in massive galaxies are very decisive in increasing AGN fractions when the host galaxies are inside clusters.

  • PDF

천문과학관의 이용자 불만요인을 활용한 개선방안 연구 - 거창월성우주창의과학관 사례를 중심으로 - (A STUDY ON IMPROVEMENT PLANS USING USER DISSATISFACTION FACTORS IN ASTRONOMICAL SCIENCE MUSEUM - Focusing on the case of Geochang Wolseong Space Creative Science Museum -)

  • 정한호;김용기
    • 천문학논총
    • /
    • 제38권3호
    • /
    • pp.99-110
    • /
    • 2023
  • In this study, complaints from visitors in the science museum satisfaction survey were categorized into four primary factors and ten sub-factors. This categorization aimed to provide recommendations for enhancing the Geochang Wolseong Space Creative Science Museum as an illustrative case study. Futhermore, the study examimed the relative importance of each factor by surveying 90 science museum visitors. The following results are obtained. Firstly, it was evident that the Geochang Wolseong Space Creative Science Museum requires urgent improvement. Certainly, in the primary factors, issues related to the utilization environment emerged as the most significant sources of dissatisfaction, while in the sub-factors, the adequacy of fees was identified as the most prominent concern. Secondly, through the result of the IPA (Importance-Performance Analysis) of the complaint factors, four primary issues were identified as top priorities for consideration: fare adequacy, lack of convenient facilities, in sufficient publicity, and a lack of distinctiveness compared to similar facilities. Lastly, when analyzing the relationship between complaints and overall satisfaction, factors related to human service, environment, and educational content had negative effects. In contrast, factors associated with science museum operation exhibited a different trend, suggestinga structural impact relationship with the overall impact of complaints.