• Title/Summary/Keyword: surrounding rock

Search Result 338, Processing Time 0.022 seconds

An improved radius-incremental-approach of stress and displacement for strain-softening surrounding rock considering hydraulic-mechanical coupling

  • Zou, Jin-Feng;Wei, Xing-Xing
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.59-69
    • /
    • 2018
  • This study focused on the mechanical and hydraulic characteristics of underwater tunnels based on Mohr-Coulomb (M-C), Hoek-Brown (H-B) and generalized H-B failure criteria. An improved approach for calculating stress, displacement and plastic radius of the circular tunnel considering hydraulic-mechanical coupling was developed. The innovation of this study was that the radius-incremental-approach was reconstructed (i.e., the whole plastic zone is divided into a finite number of concentric annuli by radius), stress and displacement of each annulus were determined in terms of numerical method and Terzaghi's effective stress principle. The validation of the proposed approach was conducted by comparing with the results in Brown and Bray (1982) and Park and Kim (2006). In addition, the Rp-pin curve (plastic radius-internal supporting pressure curve) was obtained using the numerical iterative method, and the plastic radius of the deep-buried tunnel could be obtained by interpolation method in terms of the known value of internal supporting pressure pin. Combining with the theories in Carranza and Fairhurst (2000), the improved technique for assessing the reliability of the tunnel support was proposed.

Analytical Technique and Load Transfer Features on Pile Using Finite Difference Method (유한차분법을 이용한 말뚝의 하중전이특성 및 해석기법)

  • Han, Jung-Geun;Lee, Jae-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.5
    • /
    • pp.10-21
    • /
    • 2006
  • For analyze of the bearing capacity, skin friction and settlements of pile on axial compressive loading, both Load transfer tests of pile and pile loading test in field have application to commonly before pile installing. A bearing capacity of pile was affected by the characteristics of surrounding ground of pile. Especially, that is very different because of evaluation of settlement due to each soil conditions of ground depths. The ground characteristics using evaluation of bearing capacity of pile through load transfer analysis depends on N values of SPT, and then a bearing capacity of pile installed soft ground and refilled area may be difficult to rational evaluation. An evaluation of bearing capacity on pile applied axial compressive loading was effected by strength of ground installed pile, unconfined compressive strength at pile tip, pile diameter, rough of excavated surface, confining pressure and deformation modules of rock etc and these are commonly including the unreliability due to slime occurred excavation works. Load transfer characteristics considered ground conditions take charge of load transfer of large diameter pile was investigated through case study applied load transfer tests. To these, matrix analytical technique of load transfer using finite differential equation developed and compared with the results of pile load test.

An Experimental and Theoretical Evaluation of the Axial Vibration Properties of a Typical Drillstring (드릴스트링의 종진동 특성에 대한 실험적 및 이론적 연구)

  • Lee,
    • Journal of KSNVE
    • /
    • v.5 no.1
    • /
    • pp.107-115
    • /
    • 1995
  • An analytical model for drillstring axial vibration is proposed. The drillstring is modelled as an equivalent stepwise uniform bar, and the bottom boundary is modelled asa spring and a damper which depend on WOB(weight on bit). The effect of tool joints and the effect of surrounding layers, such as mud and formation, are evaluated theoretically. To investigate the bottom boundary condition, a forced axial vibration testing technique was developed and the tests with a typical drillstring were performed at various WOB's. The results show good agreement with theoretical results. An important conclusion is that the flexibility of the bottom rock must be included in order to predict resonant frequencies of the drillstring axial vibration.

  • PDF

Development of New Micropiling Technique and Field Installation (신개념 마이크로파일 개발 및 현장시험시공)

  • Choi, Chang-Ho;Goo, Jeong-Min;Lee, Jung-Hoon;Cho, Sam-Deok;Jeong, Jae-Hyeong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.571-578
    • /
    • 2009
  • Recently, micropiling techniques are increasingly applied in foundation rehabilitation/underpinning and seismic retrofitting projects where working space provides the limited access for conventional piling methods. Micropiling techniques provide environmental-friendly methods for minimizing disturbance to adjacent structures, ground, and the environment. Its installation is possible in restrictive area and general ground conditions. The cardinal features that the installation procedures cause minimal vibration and noise and require very low ceiling height make the micropiling methods to be commonly used for underpin existing structures. In the design point of view, the current practice obligates the bearing capacity of micropile to be obtained from skin friction of only rock-socketing area, in which it implies the frictional resistance of upper soil layer is ignored in the design process. In this paper, a new micropiling method and its verification studies via field installation are presented. The new method provides a specific way to grout bore-hole to increase frictional resistance between surrounding soil and pile-structure and it allows to consider the skin friction of micropiles for upper soil layer during design process.

  • PDF

Mass Transport of Soluble Species Through Backfill into Surrounding Rock (용해도가 큰 핵종의 충전물질에서 주변 암반으로의 이동 현상)

  • Kang, Chul-Hyung;Park, Hun-Hwee
    • Nuclear Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.228-235
    • /
    • 1992
  • Some soluble species may not be solubility-limited or congruent-released with the matrix species. For example, during the operation of the nuclear reactor, the fission products can be accumulated in the fuel-cladding gap, voids, and grain boundaries of the fuel rods. In the waste package for spent-fuel placed in a geologic repository, the high solubility species of these fission products accumulated in the“gap”, e.g. cesium or iodine are expected to dissolve rapidly when ground water penetrates fuel rods. The time and space dependent mass transport for high solubility nuclides in the gap is analyzed, and its numerical illustrations are demonstrated. The approximate solution that is valid for all times is developed, and validated by comparison with an asymptotic solution and the solution obtained by the numerical inversion of Laplace transform covering the entire time span.

  • PDF

Three-Dimensional Dynamic Analysis of Underground Openings Subjected to Explosive Loadings (폭발하중에 대한 지하공동구조체의 3차원 공적 유한요소해석)

  • 김선훈;김진웅;김광진
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.171-178
    • /
    • 1997
  • Three-dimensional dynamic analyses of underground openings subjected to explosive loadings are carried out. Dynamic analyses consist of two steps; one-dimensional source calculation and three-dimensional tunnel analysis. One-dimensional source calculation includes explosive charge and the free field surrounding rock. The input pressure time history for three-dimensional tunnel analysis is obtained from the companion one-dimensional source calculation. The computer program MPDAP-3D incorporated this analysis capability. It is shown that the computer program is a useful tool for the analysis of the structural safety evaluation of underground openings during construction by drill and blasting method.

  • PDF

Study on the distribution law of stress deviator below the floor of a goaf

  • Li, Zhaolong;Shan, Renliang;Wang, Chunhe;Yuan, Honghu;Wei, Yonghui
    • Geomechanics and Engineering
    • /
    • v.21 no.3
    • /
    • pp.301-313
    • /
    • 2020
  • In the process of mining closely spaced coal seams, the problem of roadway arrangement in lower coal seams has long been a concern. By means of mechanical model calculation and numerical simulation postprocessing, the distribution of the stress deviator below the floor of a goaf and the evolution of the stress deviator in the vertical and horizontal directions are studied under the influence of horizontal stress. The results of this theoretical study and numerical simulation show that the stress deviator decreases exponentially with increasing depth from the floor below the coal side. With the increase in the horizontal stress coefficient λ, the stress deviator concentration area shifts. The stress deviator is concentrated within 10 m below the goaf and 15 m laterally from the coal side; thus, the magnitude of the surrounding rock stress deviator should be considered when planning the construction of a roadway in this area.

A simple prediction procedure of strain-softening surrounding rock for a circular opening

  • Wang, Feng;Zou, Jin-Feng
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.619-626
    • /
    • 2018
  • A simple prediction procedure was investigated for calculating the stresses and displacements of a circular opening. Unlike existed approaches, the proposed approach starts each step with a radius increment. The stress for each annulus could be obtained analytically, while strain increments for each step can be determinate numerically from the compatility equation by finite difference approximation, flow rule and Hooke's law. In the successive manner, the distributions of stresses and displacements could be found. It should be noted that the finial radial stress and displacement were equal to the internal supporting pressure and deformation at the tunnel wall, respectively. By assuming different plastic radii, GRC and the evolution curve of plastic radii and internal supporting pressures could be obtained conveniently. Then the real plastic radius can be calculated by using linear interpolation in the evolution curve. Some numerical and engineering examples were performed to demonstrate the accuracy and validity for the proposed procedure. The comparisons results show that the proposed procedure was faster than that in Lee and Pietrucszczak (2008). The influence of annulus number and dilation on the accuracy of solutions was also investigated. Results show that the larger the annulus number was, the more accurate the solutions were. Solutions in Park et al. (2008) were significantly influenced by dilation.

Spectral Characteristics of Hydrothermal Alteration in Zuru, NW Nigeria

  • Aisabokhae, Joseph;Tampul, Hamman
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.535-544
    • /
    • 2019
  • This study demonstrated the ability of a Landsat-8 OLI multispectral data to identify and delineate hydrothermal alteration zones around auriferous prospects within the crystalline basement, North-western Nigeria. Remote sensing techniques have been widely used in lithological, structural discrimination and alteration rock delineation, and in general geological studies. Several artisanal mining activities for gold deposit occur in the surrounding areas within the basement complex and the search for new possible mineralized zones have heightened in recent times. Systematic Landsat-8 OLI data processing methods such as colour composite, band ratio and minimum noise fraction were used in this study. Colour composite of band 4, 3 and 2 was displayed in Red-Green-Blue colour image to distinguish lithologies. Band ratio ${\frac{4}{2}}$ image displayed in red was used to highlight ferric-ion bearing minerals(hematite, goethite, jarosite) associated with hydrothermal alteration, band ratio ${\frac{5}{6}}$ image displayed in green was used to highlight ferrous-ion bearing minerals such as olivine, amphibole and pyroxenes, while ratio ${\frac{6}{7}}$ image displayed in blue was used to highlight clay minerals, micas, talc-carbonates, etc. Band rationing helped to reduce the topographic illumination effect within images. The result of this study showed the distribution of the lithological units and the hydrothermal alteration zone which can be further prospected for mineral reserves.

Mechanical Mechanism of Main Tunnels and Cross Passage Construction - A 3D Numerical Investigation

  • Yoo, Chungsik;Shuaishuai, Cui;Ke, Wu;Qianjn, Zhang;Zheng, Zhang;Jiahui, Zhao
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.11-23
    • /
    • 2019
  • This paper presents the results of a three-dimensional numerical investigation into the mechanical mechanism of main tunnels and cross passage construction. Aimed at the complex space structure composed of two main tunnels and cross passage, 3D numerical model of the structure and surrounding rock was built to analyze the influence. Comparative analysis of different buried depths were carried out. The results of the study indicate that the stress concentration was occurred in the intersecting linings, especially in the opening side lining, which leads to an unfavorable form of force that is pulled up by the upper and lower sections in the intersecting linings due to the construction of the cross passage. The excavation of the cross passage also destroys the stability of the original soil layer and causes settlement of the surface and main tunnels. Practical implications of the findings are discussed.