• Title/Summary/Keyword: surjectivity

Search Result 6, Processing Time 0.018 seconds

TORSION POINTS OF ELLIPTIC CURVES WITH BAD REDUCTION AT SOME PRIMES II

  • Yasuda, Masaya
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.83-96
    • /
    • 2013
  • Let K be a number field and fix a prime number $p$. For any set S of primes of K, we here say that an elliptic curve E over K has S-reduction if E has bad reduction only at the primes of S. There exists the set $B_{K,p}$ of primes of K satisfying that any elliptic curve over K with $B_{K,p}$-reduction has no $p$-torsion points under certain conditions. The first aim of this paper is to construct elliptic curves over K with $B_{K,p}$-reduction and a $p$-torsion point. The action of the absolute Galois group on the $p$-torsion subgroup of E gives its associated Galois representation $\bar{\rho}_{E,p}$ modulo $p$. We also study the irreducibility and surjectivity of $\bar{\rho}_{E,p}$ for semistable elliptic curves with $B_{K,p}$-reduction.

ON SURJECTIVITY OF m-ACCRETIVE OPERATORS IN BANACH SPACES

  • Han, Song-Ho;Kim, Myeong-Hwan;Park, Jong An.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.203-209
    • /
    • 1989
  • Recently many authors [2,3,5,6] proved the existence of zeros of accretive operators and estimated the range of m-accretive operators or compact perturbations of m-accretive operators more sharply. Their results could be obtained from differential equations in Banach spaces or iteration methods or Leray-Schauder degree theory. On the other hand Kirk and Schonberg [9] used the domain invariance theorem of Deimling [3] to prove some general minimum principles for continuous accretive operators. Kirk and Schonberg [10] also obtained the range of m-accretive operators (multi-valued and without any continuity assumption) and the implications of an equivalent boundary conditions. Their fundamental tool of proofs is based on a precise analysis of the orbit of resolvents of m-accretive operator at a specified point in its domain. In this paper we obtain a sufficient condition for m-accretive operators to have a zero. From this we derive Theorem 1 of Kirk and Schonberg [10] and some results of Morales [12, 13] and Torrejon[15]. And we further generalize Theorem 5 of Browder [1] by using Theorem 3 of Kirk and Schonberg [10].

  • PDF

INVARIANCE OF DOMAIN THEOREM FOR DEMICONTINUOUS MAPPINGS OF TYPE ( $S_+$)

  • Park, Jong-An
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.81-87
    • /
    • 1992
  • Wellknown invariance of domain theorems are Brower's invariance of domain theorem for continuous mappings defined on a finite dimensional space and Schauder-Leray's invariance of domain theorem for the class of mappings I+C defined on a infinite dimensional Banach space with I the identity and C compact. The two classical invariance of domain theorems were proved by applying the homotopy invariance of Brower's degree and Leray-Schauder's degree respectively. Degree theory for some class of mappings is a useful tool for mapping theorems. And mapping theorems (or surjectivity theorems of mappings) are closely related with invariance of domain theorems for mappings. In[4, 5], Browder and Petryshyn constructed a multi-valued degree theory for A-proper mappings. From this degree Petryshyn [9] obtained some invariance of domain theorems for locally A-proper mappings. Recently Browder [6] has developed a degree theory for demicontinuous mapings of type ( $S_{+}$) from a reflexive Banach space X to its dual $X^{*}$. By applying this degree we obtain some invariance of domain theorems for demicontinuous mappings of type ( $S_{+}$). ( $S_{+}$).

  • PDF