• Title/Summary/Keyword: surfactant-polymer system

Search Result 43, Processing Time 0.028 seconds

Binding of Vaccine and Poly(DL-lactide-co-glycolide) Nanoparticle Modified with Anionic Surfactant (음이온성 유화제로 수식된 폴리락티드/글리코리드 공중합체 나노 입자와 백신의 결합성)

  • Choi, Min-Soo;Park, Eun-Seok;Chi, Sang-Cheol;Shin, Byung-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.3
    • /
    • pp.177-183
    • /
    • 2004
  • Recently, studies on intranasal mucosa delivery of influenza vaccine have been actively developed because of lack of pain and ease of administration. We studied on preparation of nanoparticle delivery system using biodegradable polymer as a poly(DL-lactide-co-glycolide) (PLGA) and their binding characteristics with vaccine. Three kinds of PLGA nanoparticles were prepared by spontaneous emulsification solvent diffusion (SESD) method using sodium dodecyl sulfate and sodium laurate as an anionic surfactant and Lutrol F68 (polyethylene glycol-block-polypropylene glycol copolymer) as a nonionic surfactant. The 5-aminofluorescein labeled vaccine was coated on the surface of nanoparticles by ionic complex. The complexes between vaccine and nanoparticles were confirmed by change of the size. After vaccine coating on the surface of anionic nanoparticles, particle size was increased from 174 to 1,040 nm. However the size of nonionic nanoparticles was not more increased than size of anionic nanoparticles. The amount of coated vaccine on the surface of PLGA nanoparticles was $14.32\;{\mu}g/mg$ with sodium dodecyl sulfate, $12.41\;{\mu}g/mg$ with sodium laurate, and $9.47{\mu}g/mg$ with Lutrol F68, respectively. In conclusion, prepared nanoparticles in this study is possible to use as a virus-like nanoparticles and it could be accept in the field of influenza vaccine delivery system.

Improvement of Solubility of Atorvastatin Calcium Using Self-Microemulsion Drug Delivery System(SMEDDS) (자가미세유화를 통한 아토르바스타틴 칼슘의 난용성 개선)

  • Lee, Jun-Hee;Choi, Myoung-Kyu;Kim, Yun-Tae;Kim, Myoung-Jin;Oh, Jae-Min;Park, Jung-Soo;Mo, Jong-Hyun;Kim, Moon-Suk;Khang, Gil-Son;Lee, Hai-Bang
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.6
    • /
    • pp.339-347
    • /
    • 2007
  • SMEDDS is mixture of oils, surfactants, and cosurfactants, which are emulsified in aqueous media under conditions of gentle agitation and digestive motility that would be encountered in the gastro-intestinal(GI) tract. The main purpose of this work is to prepare self-microemulsifying drug delivery system(SMEDDS) for oral bioavailability enhancement of a poorly water soluble drug, atorvastatin calcium. Solubility of atorvastatin calcium was determined in various vehicles. Pseudo-ternary phase diagrams were constructed to identity the efficient self-emulsification region and particle size distributions of the resultant micro emulsions were determined using a laser diffraction sizer. Optimized formulations for in vitro dissolution and bioavailability assessment were $Capryol^{(R)}$ 90(50%), Tetraglycol(16%), and $Cremophor^{(R)}$ EL(32%). The release rate of atorvastatin from SMEDDS was significantly higher than the conventional tablet ($Lipitor^{(R)}$), 2-fold. Our studies illustrated the potential use of SMEDDS for the delivery of hydrophobic compounds, such as atorvastatin calcium by the oral route.

Structure-Property Relationship of PVA-SbQ Water Soluble Photosensitive Polymer and its Application to Screening Process of Color Monitor (PVA-SbQ 수용성 감광성 고분자의 구조와 감도관계 및 칼라 수상관 스크린 공정에의 응용)

  • Park, Lee Soon;Han, Yoon Soo;Kim, Bong Chul
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.379-386
    • /
    • 1996
  • Photosensitive compound, 1-methyl-4-[2-(4-diethylacetylphenyl)ethenyl] pridinium methosulfate(SbQ-A salt), was synthesized from dimethyl sulfate, terephthalaldehyde mono-(diethylacetal) and 4-picoline. SbQ-A salts were reacted with poly(vinyl alcohol)s, (PVA) in aqueous solution with phosphoric acid as catalyst to give photosensitive PVA-SbQ with different SbQ content and molecular weight. Relative photosensitivity of PVA-SbQ was determined by gray scale(GS) method. The rotative sensitivity of PVA-SbQ increased with increasing amount of bound SbQ in the case of high molecular weight(MW=77,000-79,000g/mol) as substrate and decreased with decreasing molecular weight of PVA with about constant(1.3mol%) amount of bound SbQ. The most sensitive polymer was obtained when SbQ group content in PVA-SbQ reached about 2.63mol% in the case of high molecular weight(77,000-79,000g/mol) PVA. This sample showed 90 times greater sensitivity than dichromated PVA as reference photosensitive system. PVA-SbQ photosensitive polymer synthesized was applied to the photolithographic screening process of phosphor on the panel of cathode ray tube(CRT). Phosphor slurry was made with PVA-SbQ, phosphor, a small amount of surfactant and other additives using water as medium. The slurry was coated onto panel, dried by heater, exposed to UV light and then developed by distilled water. When a small amount of cationic surfactant such as cetyltrimethylammonium chloride was used in the slurry formulation, the sharpness of phosphor pattern was equal to or better than that of dichromated PVA photosensitive polymer system used currently.

  • PDF

Optimization of Conditioning Performance by Controlling Properties of Polymer-Surfactant Complex in Shampoo System (폴리머-계면활성제 콤플렉스의 물성 조절을 통한 샴푸 사용감 최적화)

  • Kang, Byung-Ha;Bae, Woo-Ri;Park, Min-Sun;Lee, Key-Hyun;Lee, Jon-Hwan;Han, Sang-Hoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.2
    • /
    • pp.93-97
    • /
    • 2010
  • In this study, cationic guar polymer was selected from many cationic polymers currently using in shampoo and then was newly developed having 0.7 % above of nitrogen content and 190~200 cps of viscosity through various performance measurements. Wet combing ability, polymer substantivity, silicone deposition and panel test were evaluated for performance measurements. Cationic guar polymer that was invented from this study can optimize conditioning effects in shampoo.

Effect of Brij98 on Durability of Silver Polymer Electrolyte Membranes for Facilitated Olefin Transport (올레핀 촉진수송용 고분자 전해질막의 내구성에 대한 Brij98의 효과)

  • Kang, Yong-Soo;Kim, Jong-Hak;Park, Bye-Hun;Won, Jong-Ok
    • Membrane Journal
    • /
    • v.16 no.4
    • /
    • pp.294-302
    • /
    • 2006
  • Silver polymer electrolytes are very promising membrane materials for the separation of olefin/paraffn mixtures. Olefin molecules are known to be transported through reversible complex formation with silver ions entrapped iii polymer matrix. However, they have poor long-term stability, which is very important fur the industrial application; the selectivity through the membrane decreases gradually with time mostly due to the reduction of silver ions ($Ag^+$) into silver nanoparticles ($Ag^0$). In this study, the stability of silver polymer electrolyte was investigated for poly(vinyl pyrrolidone) (PVP) and $AgBF_4$ system containing a surfactant, i.e. $C_{18}H_{35}(OCH_2CH_2)_{20}OH$ (Brij98) as a stabilizer. The reduction behavior of silver ions to silver nanoparticles in PVP was also investigated by atomic force microscopy (AFM) and UV-visible spectroscopy. It was found that the growth of silver nanoparticles was slower and selectivity of polymer electrolyte for propylene in propylene/propane was maintained longer time when Brij98 was added as a stabilizer.

Formulation of Sustained-release Tablets of Felodipine using Hydrophilic Polymers and Non-ionic Surfactants (친수성고분자 및 비이온성 계면활성제를 이용한 펠로디핀 서방정제의 설계)

  • Lee, Jin-Kyo;Yang, Sung-Woon;Lee, Bong-Sang;Jeon, Hong-Ryeol;Lee, Jae-Hwi;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.4
    • /
    • pp.271-276
    • /
    • 2006
  • Felodipine, a calcium-antagonist of dihydropyridine type, is a poorly water soluble drug and has very low bioavailability. As preceding studies, use of solid dispersion systems and surfactants(solubilizers) has been suggested to increase dissolution and to improve bioavailability of felodipine. But in case of solid dispersion systems, large amount of toxic organic solvents should be used and manufacturing process time become longer than conventional process. In case of using surfactants, as time elapsed, decreasing of dissolution rate of felodipine due to crystallization has been reported. In this study, Copovidon as a hydrophilic polymer and $Transcutol^{\circledR}$ as a surfactant were combined to formulations if order to increase dissolution of felodipine and conventional wet granulation process were applied to manufacturing of formulations. The effect of Copovidon and $Transcutol^{\circledR}$ on the dissolution oi felodipine was investigated in-vitro. When Copovidon and $Transcutol^{\circledR}$ used simultaneously, the dissolution rate of felodipine was prominently increased compared with when used separately and the maximum increase in the dissolution of felodipine was 5.8 fold compared to control. This is most probably due to synergy effect by combination of Copovidon and $Transcutol^{\circledR}$. Felodipine sustained release tablets were successfully formulated using several grades of HPMC as a release retarding agent. The stability of felodipine sustained release tablet was evaluated after storage at accelerated condition($40^{\circ}C/75%\;RH$) for 6months in HDPE(High density polyethylene) bottle. Neither significant degradation nor change of dissolution rate for felodipine was observed after 6months. In conclusion, felodipine sustained release tablet was successfully formulated and dissolution of felodipine, poorly water soluble drug, was prominently increased and also stability was guaranteed by using combination system of hydrophilic polymer and surfactant.

Stereoselective Solvolyses of Activated Esters in the Aggregate System of Imidazole-Containing Copolymeric Surfactants

  • Cho, I-Whan;Lee, Burm-Jong
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.2
    • /
    • pp.172-177
    • /
    • 1989
  • Stereoselective solvolyses of optically active activated esters in the aggregate system of optically active polymeric surfactants containing imidazole and benzene moieties were performed. The catalyst polymers employed were copolymers of N-methacryloyl-L-histidine methyl ester (MHis) with N,N-dimethyl-N-hexadecyl-N-[10-(p-methacryloylo xyphenoxycarbonyl)-decyl]ammonium bromide(DEMAB). In the solvolyses of N-carbobenzoxy-D- and L-phenylalanine p-nitrophenyl esters (D-NBP and L-NBP) by polymeric catalysts, copoly(MHis-DEMAB) exhibited not only increased catalytic activity but also enhanced enantioselectivity as the mole ${\%}$ of surfactant monomers in the copolymers increased. The polymeric catalysts showed noticeable enantioselective solvolyses toward D- and L-NBP of the substrates employed. As the reaction temperature was lowered for the solvolyses of D- and L-NBP with the catalyst polymer containing 3.5 mole ${\%}$ of MHis, the increased reaction rate and enhanced enantioselectivity were observed. The coaggregative systems of the polymer and monomeric surfactants were also investigated. In the case of coaggregate system consisted of 70 mole ${\%}$ of cetyldimethylethylammonium bromide with polymeric catalyst showed maximum enantioselective catalysis, viz., $k_{cat}(L)/k_{cat}(D)$ = 2.85. The catalyst polymers in the sonicated solvolytic solutions were confirmed to form large aggregate structure by electron microscopic observation.

Characteristics of Drag Reduction Additives in the Application of District Cooling System (지역냉방시스템에의 적용을 위한 마찰저항감소 첨가물 특성 연구)

  • 윤석만;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.251-257
    • /
    • 2000
  • District heating and cooling systems offer highly efficient energy utilization and maintenance by centralizing heat management. More pumping power, however, is required because the water has to travel long distance from heat source to the users. In the present study, a trace of drag reduction additives is added to the District Cooling system to achieve a significant drag reduction and save pumping power. Water-soluble polymers, surfactants, and environment-friendly degradable polymers are used as effective drag reducing additives. Time dependent percent drag reductions are compared for various additive solutions at 100 wppm concentration for different water velocity. Without as an anionic surfactant, copolymer was most effective in percent drag reduction. It is found that there exists an optimal condition when copolymer is mixed with SDS. An environment-friendly degradable polymer, xanthan gum, is found to be a significant drag reduction additive. Ice slurry systems, can give less pressure drops compared with chilled water system for certain condtions. Drag reduction additives were also effective for the ice slurry system.

  • PDF

A Study on the Stabilization of the Papain Enzyme in the Moderately Concentrated Anionic Surfactant System (음이온 계면활성제에서 파파인 효소의 안정도에 관한 연구)

  • Kim, Ji-Yeong;Kim, Jin-Woo;Kim, Yong-Jin;Lee, Jae-Wook;Lee, Hae-Kwang;Kang, Hak-Hee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.2
    • /
    • pp.93-97
    • /
    • 2007
  • Even in the moderately concentrated anionic surfactant system, some special encapsulation method can shield the papain enzyme from proteolytic attacks. The stabilization of enzyme has been a major issue for successful therapies. In this study, we first stabilized an enzyme, papain in the microcapsules by using polyols, polyethyleneglycol (PEG), poly-propyleneglycol (PPG), and PEG-PPG-PEG block copolymer. In the analysis of EDS and CLSM, it was demonstrated that polyols are effectively located in the interface of papain and polymer. Polyols located in the interface had an ability to buffer the external triggers by hydrophobic partitioning, preventing consequently the catalytic activity of papain in the micro-capsules. Second. we introduced multi-layer capsulation methods containing ion complex. Such a moderately concentrated anionic surfactant system as wash-off cleansers, surfactants and waters can cause instability of entrapped enzymes. Surfactants and water in our final products swell the surface of enzyme capsules and penetrate into the core so easily that we can not achieve the effect of enzyme, papain. In this case, the ion complex multi-layer capsule composed of sodium lauroyl sarcosinate and polyquaternium-6 could effectively prevent water from penetration into the core enzyme, followed by in vivo test, and evaluate the stratum corneum (SC) turn-over speed.

Doxorubicin-loaded PEI-silica Nanoparticles for Cancer Therapy

  • Heekyung Park;Seungho Baek;Donghyun Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.570-575
    • /
    • 2023
  • Targeted anticancer drug delivery systems are needed to enhance therapeutic efficacy by selectively delivering drugs to tumor cells while minimizing off-target effects, improving treatment outcomes and reducing toxicity. In this study, a silica-based nanocarrier capable of targeting drug delivery to cancer cells was developed. First, silica nanoparticles were synthesized by the Stöber method using the surfactant cetyltrimethylammonium bromide (CTAB). Increasing the ratio of EtOH in the solvent produced uniformly spherical silica nanoparticles. Washing the nanoparticles removed unreacted residues, resulting in a non-toxic carrier for drug delivery in cells. Upon surface modification, the pH-responsive polymer, polyethyleneimine (PEI) exhibited slow doxorubicin release at pH 7.4 and accelerated release at pH 5.5. By exploiting this feature, we developed a system capable of targeted drug release in the acidic tumor microenvironment.